# PerpendicularBisector

PerpendicularBisector[{p1,p2}]

gives the perpendicular bisector of the line segment connecting p1 and p2.

PerpendicularBisector[Line[{p1,p2}]]

gives the perpendicular bisector of a line segment.

# Examples

open allclose all

## Basic Examples(1)

Calculate the perpendicular bisector of a line segment:

## Properties & Relations(2)

The PerpendicularBisector is perpendicular to the line segment and passes through the Midpoint:

TriangleConstruct[{a,b,c},"PerpendicularBisector"] is equivalent to PerpendicularBisector[{a,c}]:

## Possible Issues(1)

PerpendicularBisector only works in 2D:

Wolfram Research (2019), PerpendicularBisector, Wolfram Language function, https://reference.wolfram.com/language/ref/PerpendicularBisector.html.

#### Text

Wolfram Research (2019), PerpendicularBisector, Wolfram Language function, https://reference.wolfram.com/language/ref/PerpendicularBisector.html.

#### CMS

Wolfram Language. 2019. "PerpendicularBisector." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/PerpendicularBisector.html.

#### APA

Wolfram Language. (2019). PerpendicularBisector. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PerpendicularBisector.html

#### BibTeX

@misc{reference.wolfram_2024_perpendicularbisector, author="Wolfram Research", title="{PerpendicularBisector}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/PerpendicularBisector.html}", note=[Accessed: 18-July-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_perpendicularbisector, organization={Wolfram Research}, title={PerpendicularBisector}, year={2019}, url={https://reference.wolfram.com/language/ref/PerpendicularBisector.html}, note=[Accessed: 18-July-2024 ]}