AugmentedSymmetricPolynomial

AugmentedSymmetricPolynomial[{r1,r2,}]

形式的で引数のある,指数 r1, r2, の対称式を表す.

AugmentedSymmetricPolynomial[{{r11,,r1n},{r21,,r2n},}]

多変量かつ形式的で引数のある,指数ベクトルが{r11, , r1n}, {r21, , r2n}, の対称式を表す.

AugmentedSymmetricPolynomial[rspec,data]

data 中の引数のある対称式を返す.

詳細

例題

すべて開くすべて閉じる

  (1)

スコープ  (2)

MomentEvaluateを使って形式的な引数を持った対称式を評価する:

TraditionalFormによる表示:

アプリケーション  (1)

AugmentedSymmetricPolynomialの多項式を線形化する:

特性と関係  (1)

指数が1つのAugmentedSymmetricPolynomialPowerSymmetricPolynomialに等しい:

この関係は多変量一般化にも該当する:

Wolfram Research (2010), AugmentedSymmetricPolynomial, Wolfram言語関数, https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html.

テキスト

Wolfram Research (2010), AugmentedSymmetricPolynomial, Wolfram言語関数, https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html.

CMS

Wolfram Language. 2010. "AugmentedSymmetricPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html.

APA

Wolfram Language. (2010). AugmentedSymmetricPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html

BibTeX

@misc{reference.wolfram_2024_augmentedsymmetricpolynomial, author="Wolfram Research", title="{AugmentedSymmetricPolynomial}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_augmentedsymmetricpolynomial, organization={Wolfram Research}, title={AugmentedSymmetricPolynomial}, year={2010}, url={https://reference.wolfram.com/language/ref/AugmentedSymmetricPolynomial.html}, note=[Accessed: 21-November-2024 ]}