BeveledPolyhedron

BeveledPolyhedron[poly]

gives the beveled polyhedron of poly, by beveling each edge.

BeveledPolyhedron[poly,l]

bevels the polyhedron poly by a length ratio l at its edges.

Details and Options

Examples

open allclose all

Basic Examples  (2)

Beveled polyhedron of a dodecahedron:

Find the beveled polyhedron of the space shuttle:

Visualization:

Scope  (4)

BeveledPolyhedron works on polyhedrons:

BeveledPolyhedron of Platonic solids includes Tetrahedron:

Cube:

Dodecahedron:

Octahedron:

Icosahedron:

Support polyhedron meshes:

Bevel the polyhedron by different length ratios:

Applications  (5)

Basic Applications  (3)

Gallery of Platonic solids and their beveled polyhedrons:

Gallery of Archimedean solids and their beveled polyhedrons:

Beveled compounds of Platonic solids:

Archimedean solids:

Polyhedron Operations  (2)

Use BeveledPolyhedron to compute the polyhedron operations, such as meta-operation:

BeveledPolyhedron can be computed by TruncatedPolyhedron:

Possible Issues  (2)

BeveledPolyhedron only supports simple polyhedrons:

BeveledPolyhedron can return degenerate polyhedra:

Wolfram Research (2019), BeveledPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/BeveledPolyhedron.html.

Text

Wolfram Research (2019), BeveledPolyhedron, Wolfram Language function, https://reference.wolfram.com/language/ref/BeveledPolyhedron.html.

CMS

Wolfram Language. 2019. "BeveledPolyhedron." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BeveledPolyhedron.html.

APA

Wolfram Language. (2019). BeveledPolyhedron. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BeveledPolyhedron.html

BibTeX

@misc{reference.wolfram_2024_beveledpolyhedron, author="Wolfram Research", title="{BeveledPolyhedron}", year="2019", howpublished="\url{https://reference.wolfram.com/language/ref/BeveledPolyhedron.html}", note=[Accessed: 20-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_beveledpolyhedron, organization={Wolfram Research}, title={BeveledPolyhedron}, year={2019}, url={https://reference.wolfram.com/language/ref/BeveledPolyhedron.html}, note=[Accessed: 20-January-2025 ]}