ChineseRemainder[{r1,r2,…},{m1,m2,…}]
gives the smallest with
that satisfies all the integer congruences
.
ChineseRemainder[{r1,r2,…},{m1,m2,…},d]
gives the smallest with
that satisfies all the integer congruences
.


ChineseRemainder
ChineseRemainder[{r1,r2,…},{m1,m2,…}]
gives the smallest with
that satisfies all the integer congruences
.
ChineseRemainder[{r1,r2,…},{m1,m2,…},d]
gives the smallest with
that satisfies all the integer congruences
.
Details

- If no solution for
exists, ChineseRemainder returns unevaluated.
- If all 0≤ri<mi, then the result satisfies
.
- ChineseRemainder[{r1,r2,…},{m1,m2,…}] gives a solution
with
.
- ChineseRemainder[{r1,r2,…},{m1,m2,…},d] gives a solution
with
.
Examples
open all close allBasic Examples (2)
Applications (3)
Properties & Relations (1)
Solve congruential equations using Reduce or FindInstance:
See Also
Function Repository: IntegerSpectralDecomposition IntegerSpectralBasis
Tech Notes
Related Guides
Text
Wolfram Research (2007), ChineseRemainder, Wolfram Language function, https://reference.wolfram.com/language/ref/ChineseRemainder.html (updated 2016).
CMS
Wolfram Language. 2007. "ChineseRemainder." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2016. https://reference.wolfram.com/language/ref/ChineseRemainder.html.
APA
Wolfram Language. (2007). ChineseRemainder. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ChineseRemainder.html
BibTeX
@misc{reference.wolfram_2025_chineseremainder, author="Wolfram Research", title="{ChineseRemainder}", year="2016", howpublished="\url{https://reference.wolfram.com/language/ref/ChineseRemainder.html}", note=[Accessed: 15-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_chineseremainder, organization={Wolfram Research}, title={ChineseRemainder}, year={2016}, url={https://reference.wolfram.com/language/ref/ChineseRemainder.html}, note=[Accessed: 15-August-2025]}