gives the ClebschGordan coefficient for the decomposition of in terms of .


  • The ClebschGordan coefficients vanish except when and the satisfy a triangle inequality.
  • The parameters of ClebschGordan can be integers, halfintegers, or symbolic expressions.
  • The Wolfram Language uses the standard conventions of Edmonds for the phase of the ClebschGordan coefficients.


open allclose all

Basic Examples  (2)

Use symbolic arguments to obtain exact symbolic answers:

Scope  (2)

ClebschGordan works with integer and halfinteger arguments:

For symbolic input ClebschGordan evaluates to ThreeJSymbol:

Applications  (3)

Plot ClebschGordan coefficients as a function of and :

Decompose a spherical harmonic into a sum of products of two spherical harmonics:

Apply angular momentum operators to spherical harmonics:

Properties & Relations  (2)

Evaluate the completely symbolic case of ClebschGordan:

Demonstrate sum orthogonality:

Possible Issues  (1)

A message is issued and the result of 0 is returned when :

Neat Examples  (1)

Introduced in 1991