WignerD
WignerD[{j,m1,m2},ψ,θ,ϕ]
gives the Wigner D-function .
WignerD[{j,m1,m2},θ,ϕ]
gives the Wigner D-function .
WignerD[{j,m1,m2},θ]
gives the Wigner D-function .
Details
- The Wigner D-function gives the matrix element of a rotation operator parametrized by Euler angles in a –dimensional unitary representation of a rotation group when parameters , , are physical, i.e. all integers or half-integers such that .
- For unphysical parameters, WignerD is defined by an analytic continuation.
- The Wolfram Language uses phase conventions where .
Examples
open allclose allBasic Examples (1)
Applications (1)
Properties & Relations (4)
For vanishing parameter m1, WignerD reduces to SphericalHarmonicY:
Matrix elements of the Wigner D-matrix satisfy certain symmetry relations:
WignerD functions form an orthogonal basis on the group:
The product of two WignerD functions can be expanded in terms of WignerD functions using ClebschGordan coefficients:
Text
Wolfram Research (2010), WignerD, Wolfram Language function, https://reference.wolfram.com/language/ref/WignerD.html.
CMS
Wolfram Language. 2010. "WignerD." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WignerD.html.
APA
Wolfram Language. (2010). WignerD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WignerD.html