CombinatorY

CombinatorY

represents the combinator.

Details

Examples

open allclose all

Basic Examples  (1)

Apply the standard reduction rules of combinatory logic:

These reduction rules do not terminate:

Properties & Relations  (1)

The TemplateBox[{}, CombinatorY] combinator can be expressed in terms of TemplateBox[{}, CombinatorS], TemplateBox[{}, CombinatorK] and TemplateBox[{}, CombinatorI] in many ways:

Wolfram Research (2020), CombinatorY, Wolfram Language function, https://reference.wolfram.com/language/ref/CombinatorY.html.

Text

Wolfram Research (2020), CombinatorY, Wolfram Language function, https://reference.wolfram.com/language/ref/CombinatorY.html.

BibTeX

@misc{reference.wolfram_2020_combinatory, author="Wolfram Research", title="{CombinatorY}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/CombinatorY.html}", note=[Accessed: 16-January-2021 ]}

BibLaTeX

@online{reference.wolfram_2020_combinatory, organization={Wolfram Research}, title={CombinatorY}, year={2020}, url={https://reference.wolfram.com/language/ref/CombinatorY.html}, note=[Accessed: 16-January-2021 ]}

CMS

Wolfram Language. 2020. "CombinatorY." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CombinatorY.html.

APA

Wolfram Language. (2020). CombinatorY. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CombinatorY.html