DEigenvalues
DEigenvalues[ℒ[u[x,y,…],u,{x,y,…}∈Ω,n]
gives the n smallest magnitude eigenvalues for the linear differential operator ℒ over the region Ω.
DEigenvalues[eqns,u,t,{x,y,…}∈Ω,n]
gives the eigenvalues for solutions u of the time-dependent differential equations eqns.
Details and Options
- DEigenvalues can compute eigenvalues for ordinary and partial differential operators with given boundary conditions.
- DEigenvalues gives a list {λ1,…,λn} of the n smallest magnitude eigenvalues λi.
- An eigenvalue and eigenfunction pair {λi,ui} for the differential operator ℒ satisfy ℒ[ui[x,y,…]]==λi ui[x,y,…].
- Homogeneous DirichletCondition or NeumannValue boundary conditions may be included. Inhomogeneous boundary conditions will be replaced with corresponding homogeneous boundary conditions.
- When no boundary condition is specified on the boundary ∂Ω, then this is equivalent to specifying a Neumann 0 condition.
- The equations eqns are specified as in DSolve.
- N[DEigenvalues[…]] calls NDEigenvalues for eigenvalues that cannot be computed symbolically.
- The Assumptions option can be used to specify assumptions on parameters.
Examples
open allclose allBasic Examples (2)
Scope (17)
1D (8)
Specify homogeneous Dirichlet boundary conditions:
Find the 5 smallest eigenvalues in an interval:
Specify homogeneous Neumann boundary conditions:
Find the 5 smallest eigenvalues in an interval:
Specify a homogeneous Dirichlet boundary condition:
Specify a homogeneous Neumann boundary condition:
Find the 5 smallest eigenvalues in an interval:
Find symbolic expressions for the eigenvalues of a Laplace operator:
Specify a homogeneous Dirichlet boundary condition:
Specify a homogeneous nonzero Neumann boundary condition:
Find the 5 smallest eigenvalues in an interval:
Specify a homogeneous Dirichlet boundary condition:
Find the 3 smallest eigenvalues in an interval:
The eigenvalues are roots of a transcendental equation:
Numerical approximations for the eigenvalues:
Specify a homogeneous Neumann boundary condition:
Find the 5 smallest eigenvalues and eigenfunctions in an interval:
The eigenvalues are roots of a transcendental equation:
Specify a heat equation with homogeneous Dirichlet boundary conditions:
2D (5)
Specify a Laplacian operator with homogeneous Dirichlet boundary conditions:
Find the 9 smallest eigenvalues in a rectangle:
Specify a Laplacian operator with homogeneous Neumann boundary conditions:
Find the 4 smallest eigenvalues in a rectangle:
Specify homogeneous Dirichlet boundary conditions:
Find the 4 smallest eigenvalues of the operator in a unit disk:
Specify homogeneous Dirichlet boundary conditions:
Find the 6 smallest eigenvalues of the operator in a triangle:
3D (4)
Specify homogeneous Dirichlet boundary conditions:
Find the 7 smallest eigenvalues in a cuboid:
Specify homogeneous Dirichlet boundary conditions:
Find the 5 smallest eigenvalues in a cylinder:
Specify homogeneous Dirichlet boundary conditions:
Find the 7 smallest eigenvalues in a ball:
Properties & Relations (3)
Use NDEigenvalues to find numerical eigenvalues and eigenvectors:
Use DEigensystem to find the eigensystem for a differential operator:
Apply N[DEigenvalues[…] to invoke NDEigenvalues if symbolic evaluation fails:
Text
Wolfram Research (2015), DEigenvalues, Wolfram Language function, https://reference.wolfram.com/language/ref/DEigenvalues.html.
CMS
Wolfram Language. 2015. "DEigenvalues." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DEigenvalues.html.
APA
Wolfram Language. (2015). DEigenvalues. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DEigenvalues.html