gives the n smallest magnitude eigenvalues for the linear differential operator over the region Ω.


gives the eigenvalues for solutions u of the time-dependent differential equations eqns.

Details and Options

  • DEigenvalues can compute eigenvalues for ordinary and partial differential operators with given boundary conditions.
  • DEigenvalues gives a list {λ1,,λn} of the n smallest magnitude eigenvalues λi.
  • An eigenvalue and eigenfunction pair {λi,ui} for the differential operator satisfy [ui[x,y,]]==λi ui[x,y,].
  • Homogeneous DirichletCondition or NeumannValue boundary conditions may be included. Inhomogeneous boundary conditions will be replaced with corresponding homogeneous boundary conditions.
  • When no boundary condition is specified on the boundary Ω, then this is equivalent to specifying a Neumann 0 condition.
  • The equations eqns are specified as in DSolve.
  • N[DEigenvalues[]] calls NDEigenvalues for eigenvalues that cannot be computed symbolically.
  • The Assumptions option can be used to specify assumptions on parameters.


open allclose all

Basic Examples  (2)

Find the 4 smallest eigenvalues of the Laplacian operator on [0,π]:

Click for copyable input

Compute the first 6 eigenvalues for a circular membrane with the edges clamped:

Click for copyable input
Click for copyable input

Scope  (17)

Properties & Relations  (3)

Possible Issues  (2)

See Also

DEigensystem  DSolve  NDEigenvalues  Eigenvalues  DirichletCondition  NeumannValue

Introduced in 2015