# DEigenvalues

DEigenvalues[[u[x,y,],u,{x,y,}Ω,n]

gives the n smallest magnitude eigenvalues for the linear differential operator over the region Ω.

DEigenvalues[eqns,u,t,{x,y,}Ω,n]

gives the eigenvalues for solutions u of the time-dependent differential equations eqns.

# Details and Options • DEigenvalues can compute eigenvalues for ordinary and partial differential operators with given boundary conditions.
• DEigenvalues gives a list {λ1,,λn} of the n smallest magnitude eigenvalues λi.
• An eigenvalue and eigenfunction pair {λi,ui} for the differential operator satisfy [ui[x,y,]]==λi ui[x,y,].
• Homogeneous DirichletCondition or NeumannValue boundary conditions may be included. Inhomogeneous boundary conditions will be replaced with corresponding homogeneous boundary conditions.
• When no boundary condition is specified on the boundary Ω, then this is equivalent to specifying a Neumann 0 condition.
• The equations eqns are specified as in DSolve.
• N[DEigenvalues[]] calls NDEigenvalues for eigenvalues that cannot be computed symbolically.
• The Assumptions option can be used to specify assumptions on parameters.

# Examples

open all close all

## Basic Examples(2)

Find the 4 smallest eigenvalues of the Laplacian operator on [0,π]:

 In:= Out= Compute the first 6 eigenvalues for a circular membrane with the edges clamped:

 In:= Out//TraditionalForm= In:= Out= ## Possible Issues(2)

Introduced in 2015
(10.3)