DifferentialRootReduce

DifferentialRootReduce[expr,x]

尽可能地将 expr 化简成单个关于 x 的函数 DifferentialRoot 对象.

DifferentialRootReduce[expr,{x,x0}]

指定 x=x0 为初始条件.

更多信息和选项

范例

打开所有单元关闭所有单元

基本范例  (1)

将贝塞尔函数化约成 DifferentialRoot

范围  (7)

多项式函数:

有理函数:

代数函数:

加法:

乘法:

普通表达式:

DifferentialRootReduce 自动逐项作用于列表:

选项  (1)

Method  (1)

DifferentialRootReduce 可以给出非齐次方程:

用选项 Method->"Homogeneous" 得到齐次方程:

应用  (3)

DifferentialRootReduce 为初等函数生成具有初始值的微分方程:

DifferentialRootReduce 为特殊函数生成具有初始值的微分方程:

DifferentialRootReduce 生成遵循不同函数的组合的微分方程:

Wolfram Research (2008),DifferentialRootReduce,Wolfram 语言函数,https://reference.wolfram.com/language/ref/DifferentialRootReduce.html (更新于 2020 年).

文本

Wolfram Research (2008),DifferentialRootReduce,Wolfram 语言函数,https://reference.wolfram.com/language/ref/DifferentialRootReduce.html (更新于 2020 年).

CMS

Wolfram 语言. 2008. "DifferentialRootReduce." Wolfram 语言与系统参考资料中心. Wolfram Research. 最新版本 2020. https://reference.wolfram.com/language/ref/DifferentialRootReduce.html.

APA

Wolfram 语言. (2008). DifferentialRootReduce. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/DifferentialRootReduce.html 年

BibTeX

@misc{reference.wolfram_2024_differentialrootreduce, author="Wolfram Research", title="{DifferentialRootReduce}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/DifferentialRootReduce.html}", note=[Accessed: 15-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_differentialrootreduce, organization={Wolfram Research}, title={DifferentialRootReduce}, year={2020}, url={https://reference.wolfram.com/language/ref/DifferentialRootReduce.html}, note=[Accessed: 15-November-2024 ]}