DifferentialRootReduce

DifferentialRootReduce[expr,x]

attempts to reduce expr to a single DifferentialRoot object as a function of x.

DifferentialRootReduce[expr,{x,x0}]

takes the initial conditions to be specified at x=x0.

Details and Options

Examples

open allclose all

Basic Examples  (1)

Reduce the Bessel function to a DifferentialRoot:

Scope  (7)

Polynomial functions:

Rational functions:

Algebraic functions:

Addition:

Multiplication:

General expressions:

DifferentialRootReduce threads automatically over lists:

Options  (1)

Method  (1)

DifferentialRootReduce can give non-homogeneous equations:

Use the option Method->"Homogeneous" to get an homogeneous equation:

Applications  (3)

Use DifferentialRootReduce to generate the differential equations with initial values for elementary functions:

Use DifferentialRootReduce to generate the differential equations with initial values for special functions:

Use DifferentialRootReduce to generate the differential equations that obey combinations of different functions:

Wolfram Research (2008), DifferentialRootReduce, Wolfram Language function, https://reference.wolfram.com/language/ref/DifferentialRootReduce.html (updated 2020).

Text

Wolfram Research (2008), DifferentialRootReduce, Wolfram Language function, https://reference.wolfram.com/language/ref/DifferentialRootReduce.html (updated 2020).

CMS

Wolfram Language. 2008. "DifferentialRootReduce." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2020. https://reference.wolfram.com/language/ref/DifferentialRootReduce.html.

APA

Wolfram Language. (2008). DifferentialRootReduce. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DifferentialRootReduce.html

BibTeX

@misc{reference.wolfram_2024_differentialrootreduce, author="Wolfram Research", title="{DifferentialRootReduce}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/DifferentialRootReduce.html}", note=[Accessed: 09-September-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_differentialrootreduce, organization={Wolfram Research}, title={DifferentialRootReduce}, year={2020}, url={https://reference.wolfram.com/language/ref/DifferentialRootReduce.html}, note=[Accessed: 09-September-2024 ]}