EstimatorRegulator
✖
EstimatorRegulator
gives the output feedback controller with estimator and regulator gains l and κ for the system specification sspec.
Details and Options




- EstimatorRegulator is also known as observer controller or estimator controller.
- EstimatorRegulator is used to assemble a control system consisting of an estimator and a regulating or tracking controller.
- A regulating controller aims to maintain the system at an equilibrium state despite disturbances
pushing it away. Typical examples include maintaining an inverted pendulum in its upright position or maintaining an aircraft in level flight.
- The regulating controller is given by a control law of the form
, where
is the computed gain matrix.
- A tracking controller aims to track a reference signal despite disturbances
interfering with it. Typical examples include a cruise control system for a car or path tracking for a robot.
- The tracking controller is given by a control law of the form
, where
is the computed gain matrix for the augmented system that includes the system sys as well as the dynamics for
.
- The system specification sspec is the system sys together with the uf, ue, yt and yref specifications.
- The system specification sspec can have the following forms:
-
StateSpaceModel[…] linear control input and linear state AffineStateSpaceModel[…] linear control input and nonlinear state NonlinearStateSpaceModel[…] nonlinear control input and nonlinear state SystemModel[…] general system model <… > detailed system specification given as an Association - The detailed system specification can have the following keys:
-
"InputModel" sys any one of the models "FeedbackInputs" All the feedback inputs uf "ExogenousInputs" None the exogenous inputs ue "MeasuredOutputs" All the measured outputs ym "TrackedOutputs" None tracked outputs yt - The inputs and outputs can have the following forms:
-
{num1,…,numn} numbered inputs or outputs numi used by StateSpaceModel, AffineStateSpaceModel and NonlinearStateSpaceModel {name1,…,namen} named inputs or outputs namei used by SystemModel All uses all inputs or outputs None uses none of the inputs or outputs - The estimator gains l can be computed using EstimatorGains, LQEstimatorGains or DiscreteLQEstimatorGains.
- The feedback gains κ can be computed using StateFeedbackGains, LQRegulatorGains, LQOutputRegulatorGains or DiscreteLQRegulatorGains.
- EstimatorRegulator[…,"Data"] returns a SystemsModelControllerData object cd that can be used to extract additional properties using the form cd["prop"].
- EstimatorRegulator[…,"prop"] can be used to directly get the value of cd["prop"].
- Possible values for properties "prop" include:
-
"ClosedLoopPoles" poles of "ClosedLoopSystem" "ClosedLoopSystem" system csys {"ClosedLoopSystem",cspec} detailed control over the form of the closed-loop system "ControllerModel" model cm with , ue, ym as input and uf as output
"Design" type of controller design "DesignModel" model used for the design "EstimatorGains" gain matrix ℓ "EstimatorRegulatorModel" model erm "ExogenousInputs" deterministic and non-feedback inputs ue of sys "FeedbackGains" gain matrix κ or its equivalent "FeedbackGainsModel" model gm or {gm1,gm2} "FeedbackInputs" inputs uf of sys used for feedback "InputModel" input model sys "InputCount" number of inputs u of sys "MeasuredOutputs" measured outputs ym of sys "OpenLoopPoles" poles of the Taylor linearized sys "OutputCount" number of outputs y of sys "SamplingPeriod" sampling period of sys "StateEstimatorModel" model sem "StateOutputEstimatorModel" model soem "StateCount" number of states x of sys "TrackedOutputs" outputs yt of sys that are tracked - Possible keys for cspec include:
-
"InputModel" input model in csys "Merge" whether to merge csys "ModelName" name of csys "NoisyOutputs" subset of ym that are noisy - The diagram of the regulator layout.
- The diagram of the tracker layout.






Examples
open allclose allBasic Examples (8)Summary of the most common use cases
Construct an EstimatorRegulator:

https://wolfram.com/xid/0v5uh4tovzk4u-3oibit

An estimator regulator for a discrete-time model:

https://wolfram.com/xid/0v5uh4tovzk4u-csnm6l

https://wolfram.com/xid/0v5uh4tovzk4u-ua6u2

An estimator regulator for a nonlinear system:

https://wolfram.com/xid/0v5uh4tovzk4u-ostrs1

https://wolfram.com/xid/0v5uh4tovzk4u-dr4ljr

An estimator regulator with specified measurements and feedback inputs:

https://wolfram.com/xid/0v5uh4tovzk4u-e1ed7c

https://wolfram.com/xid/0v5uh4tovzk4u-btzq00

https://wolfram.com/xid/0v5uh4tovzk4u-2g7t61

An estimator regulator with optimal gains:

https://wolfram.com/xid/0v5uh4tovzk4u-xf8wb
A set of optimal regulator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-k7wu5

And a set of optimal estimator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-jwshec


https://wolfram.com/xid/0v5uh4tovzk4u-w5a4f


https://wolfram.com/xid/0v5uh4tovzk4u-9wpnk


https://wolfram.com/xid/0v5uh4tovzk4u-fup1s

An estimator regulator for a tracking problem:

https://wolfram.com/xid/0v5uh4tovzk4u-cmij6n

https://wolfram.com/xid/0v5uh4tovzk4u-ibxq


https://wolfram.com/xid/0v5uh4tovzk4u-mvqx4


https://wolfram.com/xid/0v5uh4tovzk4u-bmun6j
Compute the gains of the estimator regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-ho9wuo


https://wolfram.com/xid/0v5uh4tovzk4u-czqu1q

The open-loop poles and closed-loop poles:

https://wolfram.com/xid/0v5uh4tovzk4u-cujfqd

Scope (30)Survey of the scope of standard use cases
Basic Uses (8)
A system with one feedback input and one measurement:

https://wolfram.com/xid/0v5uh4tovzk4u-hgdpqv

The feedback input and measurement are inputs to the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-y53juo

A system with one noisy input as well:

https://wolfram.com/xid/0v5uh4tovzk4u-j2rslf
Noisy inputs are not inputs to the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-fgd728

A system with one feedback and one exogenous input:

https://wolfram.com/xid/0v5uh4tovzk4u-qm7dq3
The exogenous input is an input to the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-so7loq

A system where only some of the outputs are measured:

https://wolfram.com/xid/0v5uh4tovzk4u-b1vfo6
Only the feedback input and measured output are fed to the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-gihsui

Compute the gains using pole placement:

https://wolfram.com/xid/0v5uh4tovzk4u-ubnkli

https://wolfram.com/xid/0v5uh4tovzk4u-hc3erq


https://wolfram.com/xid/0v5uh4tovzk4u-qj97cf

Assemble the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-1jkcr5


https://wolfram.com/xid/0v5uh4tovzk4u-e452g3

https://wolfram.com/xid/0v5uh4tovzk4u-lgr3fo


https://wolfram.com/xid/0v5uh4tovzk4u-cqz6w2

Assemble the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-yz931h

Compute only the feedback gains optimally:

https://wolfram.com/xid/0v5uh4tovzk4u-s10c6a

https://wolfram.com/xid/0v5uh4tovzk4u-vhxick

Compute the estimator gains using pole placement:

https://wolfram.com/xid/0v5uh4tovzk4u-64941

Assemble the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-v1v1nm

The feedback data object can be also specified:

https://wolfram.com/xid/0v5uh4tovzk4u-zhnb4k

https://wolfram.com/xid/0v5uh4tovzk4u-tq5t83


https://wolfram.com/xid/0v5uh4tovzk4u-gaa2tn

Assemble the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-qdmz83

Plant Models (5)
A continuous-time StateSpaceModel:

https://wolfram.com/xid/0v5uh4tovzk4u-clgdvo
The controller for a set of gains:

https://wolfram.com/xid/0v5uh4tovzk4u-kgz99h


https://wolfram.com/xid/0v5uh4tovzk4u-wx74rs


https://wolfram.com/xid/0v5uh4tovzk4u-wm86fw

The poles of the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-sdhna8

A discrete-time StateSpaceModel:

https://wolfram.com/xid/0v5uh4tovzk4u-k6ol8v
The controller for a set of gains:

https://wolfram.com/xid/0v5uh4tovzk4u-jbx01


https://wolfram.com/xid/0v5uh4tovzk4u-cta0bv


https://wolfram.com/xid/0v5uh4tovzk4u-454da

A descriptor StateSpaceModel:

https://wolfram.com/xid/0v5uh4tovzk4u-h7hpvg
The controller has the same descriptor matrix:

https://wolfram.com/xid/0v5uh4tovzk4u-entxct


https://wolfram.com/xid/0v5uh4tovzk4u-xzjmqi


https://wolfram.com/xid/0v5uh4tovzk4u-bas19n

An AffineStateSpaceModel with a set of gains:

https://wolfram.com/xid/0v5uh4tovzk4u-drh4vj

https://wolfram.com/xid/0v5uh4tovzk4u-y6quii


https://wolfram.com/xid/0v5uh4tovzk4u-dy31fa

Its poles are that of the Taylor linearized model:

https://wolfram.com/xid/0v5uh4tovzk4u-oynbli


https://wolfram.com/xid/0v5uh4tovzk4u-nyq5p


https://wolfram.com/xid/0v5uh4tovzk4u-5tk1cx

A NonlinearStateSpaceModel with a set or gains:

https://wolfram.com/xid/0v5uh4tovzk4u-rce38

https://wolfram.com/xid/0v5uh4tovzk4u-efvkxv


https://wolfram.com/xid/0v5uh4tovzk4u-g3rgn

Its poles are that of the Taylor linearized system:

https://wolfram.com/xid/0v5uh4tovzk4u-hhlxa


https://wolfram.com/xid/0v5uh4tovzk4u-erwohf


https://wolfram.com/xid/0v5uh4tovzk4u-gvhga1

Properties (9)
By default, EstimatorRegulator returns the controller comprising the estimator and regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-twutf0

https://wolfram.com/xid/0v5uh4tovzk4u-pivkzo

The controller can also be obtained as a property:

https://wolfram.com/xid/0v5uh4tovzk4u-vyw2ld


https://wolfram.com/xid/0v5uh4tovzk4u-fnwvda


https://wolfram.com/xid/0v5uh4tovzk4u-wtfw37


https://wolfram.com/xid/0v5uh4tovzk4u-kmqodv


https://wolfram.com/xid/0v5uh4tovzk4u-j01076

The estimator-regulator feedback model:

https://wolfram.com/xid/0v5uh4tovzk4u-8phqdm

https://wolfram.com/xid/0v5uh4tovzk4u-sc1ldq

In this model, the feedback input is fed back directly:

https://wolfram.com/xid/0v5uh4tovzk4u-uyw7i5


https://wolfram.com/xid/0v5uh4tovzk4u-yooe3w

Assemble the estimator and regulator with feedback to get the same result as before:

https://wolfram.com/xid/0v5uh4tovzk4u-j0uazb

The closed-loop system differs from the computed one only in the input matrix:

https://wolfram.com/xid/0v5uh4tovzk4u-4env8z


https://wolfram.com/xid/0v5uh4tovzk4u-1t5yhg

Properties related to the input model and gains:

https://wolfram.com/xid/0v5uh4tovzk4u-u7ccjq

Get the controller data object:

https://wolfram.com/xid/0v5uh4tovzk4u-zxjbrp

The list of available properties:

https://wolfram.com/xid/0v5uh4tovzk4u-b3vk0o

The value of a specific property:

https://wolfram.com/xid/0v5uh4tovzk4u-zmt84i

Tracking (5)

https://wolfram.com/xid/0v5uh4tovzk4u-kuvepm
First design a state feedback controller and estimator:

https://wolfram.com/xid/0v5uh4tovzk4u-l6bwo7

Assemble the tracking controller:

https://wolfram.com/xid/0v5uh4tovzk4u-jno01f

The closed-loop system tracks the reference signal :

https://wolfram.com/xid/0v5uh4tovzk4u-labjao

Design a tracking controller for a discrete-time system:

https://wolfram.com/xid/0v5uh4tovzk4u-6ftl55
First design a state feedback controller and estimator:

https://wolfram.com/xid/0v5uh4tovzk4u-bp11y1

Assemble the tracking controller:

https://wolfram.com/xid/0v5uh4tovzk4u-w9sp0

The closed-loop system tracks the reference signal :

https://wolfram.com/xid/0v5uh4tovzk4u-b8ov75


https://wolfram.com/xid/0v5uh4tovzk4u-ybbac8
Design an optimal state feedback controller:

https://wolfram.com/xid/0v5uh4tovzk4u-njece0

And an estimator using pole placement:

https://wolfram.com/xid/0v5uh4tovzk4u-blzocq

Assemble the tracking controller:

https://wolfram.com/xid/0v5uh4tovzk4u-b6cdjh

The closed-loop system tracks two different reference signals:

https://wolfram.com/xid/0v5uh4tovzk4u-8eqdsk

https://wolfram.com/xid/0v5uh4tovzk4u-s73ee9

Compute the controller effort:

https://wolfram.com/xid/0v5uh4tovzk4u-sf7r31
Design an optimal state feedback controller:

https://wolfram.com/xid/0v5uh4tovzk4u-d4r25r


https://wolfram.com/xid/0v5uh4tovzk4u-tuw2m

Assemble the tracking controller:

https://wolfram.com/xid/0v5uh4tovzk4u-fh3itu


https://wolfram.com/xid/0v5uh4tovzk4u-jn0yvo


https://wolfram.com/xid/0v5uh4tovzk4u-2b6u51

https://wolfram.com/xid/0v5uh4tovzk4u-74kmvc


https://wolfram.com/xid/0v5uh4tovzk4u-qpbduu

Track a desired reference signal:

https://wolfram.com/xid/0v5uh4tovzk4u-t0y6q9

The reference signal is of order 2:

https://wolfram.com/xid/0v5uh4tovzk4u-rgy3bg


https://wolfram.com/xid/0v5uh4tovzk4u-xm4njl


Set the reference as the sum of sinusoids:

https://wolfram.com/xid/0v5uh4tovzk4u-ucimzu

Design a controller to track one output of a first-order system:

https://wolfram.com/xid/0v5uh4tovzk4u-uonosr

https://wolfram.com/xid/0v5uh4tovzk4u-gazp96

The dimensions of the state weighting matrix qq are k+m q:

https://wolfram.com/xid/0v5uh4tovzk4u-s3ojyk

Compute the regulator controller:

https://wolfram.com/xid/0v5uh4tovzk4u-thj9va

Assemble an estimator regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-c6aqua

The closed-loop system tracks the reference:

https://wolfram.com/xid/0v5uh4tovzk4u-7d0imb

Closed-Loop System (3)
The closed-loop system based on a nonlinear model:

https://wolfram.com/xid/0v5uh4tovzk4u-bq92ss

https://wolfram.com/xid/0v5uh4tovzk4u-bnuzc7

https://wolfram.com/xid/0v5uh4tovzk4u-b69hal

Compute the closed-loop system based on the linearized design:

https://wolfram.com/xid/0v5uh4tovzk4u-majduf

Compare the response of the two designs:

https://wolfram.com/xid/0v5uh4tovzk4u-blj2li

Assemble the merged closed-loop system of a plant with an EstimatorRegulator:

https://wolfram.com/xid/0v5uh4tovzk4u-jtki8

https://wolfram.com/xid/0v5uh4tovzk4u-b1hnfj

https://wolfram.com/xid/0v5uh4tovzk4u-b40eac

The unmerged closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-8rmu9m

When merged, it gives the same result as before:

https://wolfram.com/xid/0v5uh4tovzk4u-zc4x1o

Merge the closed-loop system explicitly:

https://wolfram.com/xid/0v5uh4tovzk4u-4q6edi

Create a closed-loop system with a desired name:

https://wolfram.com/xid/0v5uh4tovzk4u-8k4061

https://wolfram.com/xid/0v5uh4tovzk4u-9f85rs

https://wolfram.com/xid/0v5uh4tovzk4u-k25x1g

The closed-loop system has the specified name:

https://wolfram.com/xid/0v5uh4tovzk4u-phglys

The name can be directly used to specify the closed-loop model in other functions:

https://wolfram.com/xid/0v5uh4tovzk4u-8iktpi


https://wolfram.com/xid/0v5uh4tovzk4u-6l746w


Applications (11)Sample problems that can be solved with this function
Mechanical Systems (3)
Design a controller for a partially controllable double cart-spring system:


https://wolfram.com/xid/0v5uh4tovzk4u-t7p4e6
The system is not controllable:

https://wolfram.com/xid/0v5uh4tovzk4u-fmu8mw

Obtain the controllable subsystem:

https://wolfram.com/xid/0v5uh4tovzk4u-bja4se

The response of the open-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-jy1cvn

Compute a set of optimal feedback gains:

https://wolfram.com/xid/0v5uh4tovzk4u-clnwtd


https://wolfram.com/xid/0v5uh4tovzk4u-kilnse

Assemble the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-ldir4r

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-d19og

The horizontal positions of the masses are controlled:

https://wolfram.com/xid/0v5uh4tovzk4u-iu4bku

While the vertical position of is not:

https://wolfram.com/xid/0v5uh4tovzk4u-wj1xkm


https://wolfram.com/xid/0v5uh4tovzk4u-bv7aia


https://wolfram.com/xid/0v5uh4tovzk4u-fac5jm

Dampen the oscillations of a three-mass system:


https://wolfram.com/xid/0v5uh4tovzk4u-qxuq2u

The open-loop response is highly oscillatory:

https://wolfram.com/xid/0v5uh4tovzk4u-mu8g0z

Compute a set of optimal regulator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-eelh1l


https://wolfram.com/xid/0v5uh4tovzk4u-lpye7z

Assemble the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-8ljb8

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-eguj6z

The oscillations are suppressed by the feedback controller:

https://wolfram.com/xid/0v5uh4tovzk4u-f8e7lq


https://wolfram.com/xid/0v5uh4tovzk4u-bgoh1c


https://wolfram.com/xid/0v5uh4tovzk4u-hjc65b

Dampen the oscillations of a coupled pendulum:


https://wolfram.com/xid/0v5uh4tovzk4u-cph9zp

The undamped open-loop response:

https://wolfram.com/xid/0v5uh4tovzk4u-ofy0kq

Compute a set of estimator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-fq3snc

Compute a set of optimal gains:

https://wolfram.com/xid/0v5uh4tovzk4u-cp6gyv

Assemble the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-lzsf3m

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-b0i479

The pendulums' oscillations are damped:

https://wolfram.com/xid/0v5uh4tovzk4u-kr9l5


https://wolfram.com/xid/0v5uh4tovzk4u-dhfzsd


https://wolfram.com/xid/0v5uh4tovzk4u-g9nm6h

Aerospace Systems (3)
Stabilize the orbit of a spacecraft near a circular orbit of mean motion ω:


https://wolfram.com/xid/0v5uh4tovzk4u-3vlkgf

Discretize the system with a sampling time of :

https://wolfram.com/xid/0v5uh4tovzk4u-me5m2

The satellite's orbit is unregulated to a perturbation in the states:

https://wolfram.com/xid/0v5uh4tovzk4u-codwpc

Compute a set of regulator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-q52v7c


https://wolfram.com/xid/0v5uh4tovzk4u-w071fl

Assemble the estimator regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-gjz8f8

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-w2el8o

The satellite's orbit is stabilized:

https://wolfram.com/xid/0v5uh4tovzk4u-bvk5cf


https://wolfram.com/xid/0v5uh4tovzk4u-ens039


https://wolfram.com/xid/0v5uh4tovzk4u-ba5274



https://wolfram.com/xid/0v5uh4tovzk4u-mzst7


https://wolfram.com/xid/0v5uh4tovzk4u-dz02rc

Compute a set of regulator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-zizujz


https://wolfram.com/xid/0v5uh4tovzk4u-rd5ytv

Assemble the estimator regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-bqkkg8

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-jm5jt


https://wolfram.com/xid/0v5uh4tovzk4u-bila2k


https://wolfram.com/xid/0v5uh4tovzk4u-5m4dt6

Control a quadcopter drone’s altitude:


https://wolfram.com/xid/0v5uh4tovzk4u-fkrfi9

Without any input, the drone is in free fall:

https://wolfram.com/xid/0v5uh4tovzk4u-nv29l

A set of LQ regulator weights that consider the maximum motor voltage of v:

https://wolfram.com/xid/0v5uh4tovzk4u-ckgfks
Compute the optimal regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-jyxo8i


https://wolfram.com/xid/0v5uh4tovzk4u-hl0c1o

Assemble the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-vymgc

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-dh8u6f

The drone tracks the reference altitude:

https://wolfram.com/xid/0v5uh4tovzk4u-dismxn


https://wolfram.com/xid/0v5uh4tovzk4u-6g86l


https://wolfram.com/xid/0v5uh4tovzk4u-dquy8x

The controller effort does not exceed volts:

https://wolfram.com/xid/0v5uh4tovzk4u-ix3bna

Biological Systems (1)
Regulate the blood-glucose level in the human body:

The Bergman model of the system:

https://wolfram.com/xid/0v5uh4tovzk4u-6cv69

The system is slow with poles close to the axis:

https://wolfram.com/xid/0v5uh4tovzk4u-eyi8i

Hence the glucose level in the open-loop system takes a long time to settle:

https://wolfram.com/xid/0v5uh4tovzk4u-ix8qka

Set the exogenous insulin infusion rate as the feedback input and compute a set of optimal gains:

https://wolfram.com/xid/0v5uh4tovzk4u-2kdu2

https://wolfram.com/xid/0v5uh4tovzk4u-sacn00


https://wolfram.com/xid/0v5uh4tovzk4u-rd26we

Assemble an estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-cw7z45

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-dzplsm

The blood-glucose level settles much faster:

https://wolfram.com/xid/0v5uh4tovzk4u-32sw


https://wolfram.com/xid/0v5uh4tovzk4u-bcxpi


https://wolfram.com/xid/0v5uh4tovzk4u-dwuq20

Chemical Systems (2)
Regulate the biomass concentration in an isothermal constant-volume fermenter: »


https://wolfram.com/xid/0v5uh4tovzk4u-ifgn6d

The biomass concentration of the unregulated system:

https://wolfram.com/xid/0v5uh4tovzk4u-dyoyys

Compute a set of regulator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-bp9gir

Compute a set of estimator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-7oe1w

Assemble an estimator regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-lkxeh


https://wolfram.com/xid/0v5uh4tovzk4u-da075a

The biomass concentration is regulated:

https://wolfram.com/xid/0v5uh4tovzk4u-d8tzse


https://wolfram.com/xid/0v5uh4tovzk4u-ctkko2

Improve the response of a mixing tank process:


https://wolfram.com/xid/0v5uh4tovzk4u-df8xez

The output response takes to stabilize:

https://wolfram.com/xid/0v5uh4tovzk4u-joof3h

The system’s fast and slow modes are controllable:

https://wolfram.com/xid/0v5uh4tovzk4u-e2105

Compute a set of state feedback gains:

https://wolfram.com/xid/0v5uh4tovzk4u-dbtvcp


https://wolfram.com/xid/0v5uh4tovzk4u-d98qhx


https://wolfram.com/xid/0v5uh4tovzk4u-b8u6rb

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-dckt3t

The response of the closed-loop system only takes to stabilize:

https://wolfram.com/xid/0v5uh4tovzk4u-bphlln


https://wolfram.com/xid/0v5uh4tovzk4u-fgqlue


https://wolfram.com/xid/0v5uh4tovzk4u-c3emja

Electrical Systems (2)
Regulate a DC motor driven by a buck converter:


https://wolfram.com/xid/0v5uh4tovzk4u-5vm91c

The system has poles close to the imaginary axis:

https://wolfram.com/xid/0v5uh4tovzk4u-f8nl54

Therefore the response of the system to an initial perturbation is slow:

https://wolfram.com/xid/0v5uh4tovzk4u-c6e3ya

Compute a set of regulator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-sjkux4


https://wolfram.com/xid/0v5uh4tovzk4u-48yn4d

Assemble the estimator regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-eehucg

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-7utk7

The closed-loop response is faster:

https://wolfram.com/xid/0v5uh4tovzk4u-wm2ukv


https://wolfram.com/xid/0v5uh4tovzk4u-6ueda


https://wolfram.com/xid/0v5uh4tovzk4u-yxqko

Dampen the response of the terminal voltage of a power system:


https://wolfram.com/xid/0v5uh4tovzk4u-cau4z3
The system has two lightly damped poles:

https://wolfram.com/xid/0v5uh4tovzk4u-b9c2zd

The open-loop response is therefore highly oscillatory:

https://wolfram.com/xid/0v5uh4tovzk4u-32rqk2

Compute a set of regulator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-dcwu64


https://wolfram.com/xid/0v5uh4tovzk4u-bqgin

Assemble the estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-p9uvts

Obtain the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-qrp9x

The closed-loop response to a perturbation in the synchronous machine is damped and is faster:

https://wolfram.com/xid/0v5uh4tovzk4u-boyyzg


https://wolfram.com/xid/0v5uh4tovzk4u-kbui32


https://wolfram.com/xid/0v5uh4tovzk4u-fs83dc

Properties & Relations (7)Properties of the function, and connections to other functions
The closed-loop poles are those of the estimator and state-feedback designs:

https://wolfram.com/xid/0v5uh4tovzk4u-ojh1hw

https://wolfram.com/xid/0v5uh4tovzk4u-6whf7r

The poles of the estimator design:

https://wolfram.com/xid/0v5uh4tovzk4u-fbgmdh

The poles of the state-feedback design:

https://wolfram.com/xid/0v5uh4tovzk4u-ek0l34

An estimator-regulator assembled using gains from StateFeedbackGains and EstimatorGains:

https://wolfram.com/xid/0v5uh4tovzk4u-fd7j3j

https://wolfram.com/xid/0v5uh4tovzk4u-ke77ul


https://wolfram.com/xid/0v5uh4tovzk4u-erkbiz

The estimator-regulator can be assembled using the gains or the controller data object:

https://wolfram.com/xid/0v5uh4tovzk4u-iqpxe

An estimator-regulator assembled using gains from LQRegulatorGains and EstimatorGains:

https://wolfram.com/xid/0v5uh4tovzk4u-ituxd1

https://wolfram.com/xid/0v5uh4tovzk4u-b440oa

A set of optimal feedback gains:

https://wolfram.com/xid/0v5uh4tovzk4u-mm1eh8

The estimator-regulator can be assembled using the gains or the controller data object:

https://wolfram.com/xid/0v5uh4tovzk4u-ez4c04

An estimator-regulator assembled using gains from DiscreteLQRegulatorGains and DiscreteLQEstimatorGains:

https://wolfram.com/xid/0v5uh4tovzk4u-5ep27
A set of optimal discrete-time estimator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-mdt9s9

A set of optimal discrete-time feedback gains:

https://wolfram.com/xid/0v5uh4tovzk4u-frfxq


https://wolfram.com/xid/0v5uh4tovzk4u-gyzvr4

LQGRegulator is assembled using EstimatorRegulator:

https://wolfram.com/xid/0v5uh4tovzk4u-p76iyn

https://wolfram.com/xid/0v5uh4tovzk4u-b496lg

https://wolfram.com/xid/0v5uh4tovzk4u-7dmcbt


https://wolfram.com/xid/0v5uh4tovzk4u-s293s1


https://wolfram.com/xid/0v5uh4tovzk4u-fh97cz


https://wolfram.com/xid/0v5uh4tovzk4u-7u7nly


https://wolfram.com/xid/0v5uh4tovzk4u-mgjq2p

The uncontrollable poles of a stabilizable system are not affected by an estimator-regulator:

https://wolfram.com/xid/0v5uh4tovzk4u-ekpfwj
The stable pole is uncontrollable:

https://wolfram.com/xid/0v5uh4tovzk4u-mom4wt


https://wolfram.com/xid/0v5uh4tovzk4u-iij8xv


https://wolfram.com/xid/0v5uh4tovzk4u-dnzder

The poles of the closed-loop system:

https://wolfram.com/xid/0v5uh4tovzk4u-esnq05


https://wolfram.com/xid/0v5uh4tovzk4u-ympcpm

The uncontrollable pole is unchanged:

https://wolfram.com/xid/0v5uh4tovzk4u-i07h56

Larger estimator gains result in a faster response but amplify noise:

https://wolfram.com/xid/0v5uh4tovzk4u-jtngoa
A set of state feedback gains:

https://wolfram.com/xid/0v5uh4tovzk4u-mxqrmh

A set of increasing estimator gains:

https://wolfram.com/xid/0v5uh4tovzk4u-nijzfj


https://wolfram.com/xid/0v5uh4tovzk4u-eq4vbe


https://wolfram.com/xid/0v5uh4tovzk4u-bnr1p4

The responses of the closed-loop systems:

https://wolfram.com/xid/0v5uh4tovzk4u-c3hbxe

As the estimator gains increase, the response is faster but the effects of the noise are more pronounced:

https://wolfram.com/xid/0v5uh4tovzk4u-srzr45

The plot of the norm of the estimator gains versus output response:

https://wolfram.com/xid/0v5uh4tovzk4u-oj3zly

Wolfram Research (2010), EstimatorRegulator, Wolfram Language function, https://reference.wolfram.com/language/ref/EstimatorRegulator.html (updated 2021).
Text
Wolfram Research (2010), EstimatorRegulator, Wolfram Language function, https://reference.wolfram.com/language/ref/EstimatorRegulator.html (updated 2021).
Wolfram Research (2010), EstimatorRegulator, Wolfram Language function, https://reference.wolfram.com/language/ref/EstimatorRegulator.html (updated 2021).
CMS
Wolfram Language. 2010. "EstimatorRegulator." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/EstimatorRegulator.html.
Wolfram Language. 2010. "EstimatorRegulator." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2021. https://reference.wolfram.com/language/ref/EstimatorRegulator.html.
APA
Wolfram Language. (2010). EstimatorRegulator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EstimatorRegulator.html
Wolfram Language. (2010). EstimatorRegulator. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/EstimatorRegulator.html
BibTeX
@misc{reference.wolfram_2025_estimatorregulator, author="Wolfram Research", title="{EstimatorRegulator}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/EstimatorRegulator.html}", note=[Accessed: 24-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_estimatorregulator, organization={Wolfram Research}, title={EstimatorRegulator}, year={2021}, url={https://reference.wolfram.com/language/ref/EstimatorRegulator.html}, note=[Accessed: 24-March-2025
]}