shows the squared magnitude of the discrete Fourier transform (power spectrum) of image.


shows the average of power spectra of non-overlapping partitions of size n×n.


uses partitions with offset d.


applies a smoothing window wfun to each partition.


pads partitions with zeros to length m prior to the computation of the transform.

Details and Options

  • ImagePeriodogram logarithmically scales the power spectrum of the image and adjusts the values so that they range from 0 to 1.
  • In ImagePeriodogram[image,n,d,wfun], the smoothing window wfun can be specified using a window function that will be sampled between and , or a list of length n. The default window is DirichletWindow, which effectively does no smoothing.
  • ImagePeriodogram[image,n] is equivalent to ImagePeriodogram[image,n,n,DirichletWindow,n].
  • ImagePeriodogram[image,{n1,n2}] partitions image into blocks of size n1×n2.
  • For 3D images, ImagePeriodogram[image,{n1,n2,n3}] partitions image into blocks of size n1×n2×n3.
  • For multichannel images, ImagePeriodogram returns a multichannel image where each channel is the power spectrum computed for each channel separately.
  • ImagePeriodogram accepts the Alignment option that determines the location of the zero frequency term. The default is Alignment->Center. With Alignment->{Left,Top}, the zero frequency term is placed at the top-left corner of the image.


open allclose all

Basic Examples  (1)

Power spectrum of a texture image:

Scope  (3)

Data  (3)

Grayscale image:

Color image:

3D image:

Options  (1)

Alignment  (1)

By default, the power spectrum is centered:

Use Alignment->{Left,Top} to avoid centering:

Centering can be switched off for one dimension:

Properties & Relations  (2)

Create the image periodogram from the power spectrum data:

Use PeriodogramArray to change the default visualization settings of the image power spectrum:

Wolfram Research (2012), ImagePeriodogram, Wolfram Language function,


Wolfram Research (2012), ImagePeriodogram, Wolfram Language function,


Wolfram Language. 2012. "ImagePeriodogram." Wolfram Language & System Documentation Center. Wolfram Research.


Wolfram Language. (2012). ImagePeriodogram. Wolfram Language & System Documentation Center. Retrieved from


@misc{reference.wolfram_2024_imageperiodogram, author="Wolfram Research", title="{ImagePeriodogram}", year="2012", howpublished="\url{}", note=[Accessed: 24-June-2024 ]}


@online{reference.wolfram_2024_imageperiodogram, organization={Wolfram Research}, title={ImagePeriodogram}, year={2012}, url={}, note=[Accessed: 24-June-2024 ]}