WOLFRAM

IndependentUnit[string]

represents a unit string with no relationship to other units within a Quantity.

Details

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Represent an independent unit "Boxes" in a Quantity expression:

Out[1]=1

IndependentUnit specifications can be part of compound units:

Out[1]=1

Scope  (3)Survey of the scope of standard use cases

Use IndependentUnit specifications with Quantity:

Out[1]=1
Out[2]=2

Use IndependentUnit specifications with QuantityArray:

Out[1]=1

Use IndependentUnit specifications with QuantityDistribution:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

Specify an IndependentUnit expression and convert between unit systems:

Out[1]=1
Out[2]=2

Properties & Relations  (4)Properties of the function, and connections to other functions

KnownUnitQ returns True for valid IndependentUnit specifications:

Out[1]=1

It returns False for invalid IndependentUnit specifications:

Out[2]=2
Out[3]=3

An independent unit is only compatible with itself:

Out[1]=1
Out[2]=2

Known units are not compatible with IndependentUnit objects of the same name:

Out[3]=3

An independent unit can only be converted to itself and multiples or submultiples of itself:

Out[1]=1
Out[2]=2

The unit dimension of IndependentUnit[string] is IndependentUnitDimension[string]:

Out[1]=1
Out[2]=2

Possible Issues  (1)Common pitfalls and unexpected behavior

Each IndependentUnit[string] is unique and not compatible with other units:

Out[1]=1
Wolfram Research (2012), IndependentUnit, Wolfram Language function, https://reference.wolfram.com/language/ref/IndependentUnit.html.
Wolfram Research (2012), IndependentUnit, Wolfram Language function, https://reference.wolfram.com/language/ref/IndependentUnit.html.

Text

Wolfram Research (2012), IndependentUnit, Wolfram Language function, https://reference.wolfram.com/language/ref/IndependentUnit.html.

Wolfram Research (2012), IndependentUnit, Wolfram Language function, https://reference.wolfram.com/language/ref/IndependentUnit.html.

CMS

Wolfram Language. 2012. "IndependentUnit." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/IndependentUnit.html.

Wolfram Language. 2012. "IndependentUnit." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/IndependentUnit.html.

APA

Wolfram Language. (2012). IndependentUnit. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/IndependentUnit.html

Wolfram Language. (2012). IndependentUnit. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/IndependentUnit.html

BibTeX

@misc{reference.wolfram_2025_independentunit, author="Wolfram Research", title="{IndependentUnit}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/IndependentUnit.html}", note=[Accessed: 27-April-2025 ]}

@misc{reference.wolfram_2025_independentunit, author="Wolfram Research", title="{IndependentUnit}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/IndependentUnit.html}", note=[Accessed: 27-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_independentunit, organization={Wolfram Research}, title={IndependentUnit}, year={2012}, url={https://reference.wolfram.com/language/ref/IndependentUnit.html}, note=[Accessed: 27-April-2025 ]}

@online{reference.wolfram_2025_independentunit, organization={Wolfram Research}, title={IndependentUnit}, year={2012}, url={https://reference.wolfram.com/language/ref/IndependentUnit.html}, note=[Accessed: 27-April-2025 ]}