# Integers

represents the domain of integers, as in xIntegers.

# Details

• xIntegers evaluates immediately if x is a numeric quantity.
• Simplify[exprIntegers,assum] can be used to try to determine whether an expression is an integer under the given assumptions.
• (x1|x2|)Integers and {x1,x2,}Integers test whether all xi are integers.
• IntegerQ[expr] tests only whether expr is manifestly an integer (i.e. has head Integer).
• Integers is output in StandardForm or TraditionalForm as . This typeset form can be input using ints.

# Examples

open allclose all

## Basic Examples(3)

Seven is an integer:

If is an integer, so is :

Find positive integer solutions of a Pell equation:

## Scope(7)

Test domain membership of a numeric expression:

Make domain membership assumptions:

Specify the default domain over which a function should work:

Find integer roots of a high-degree polynomial:

Find a representation of an integer as a sum of seven squares:

Solve an optimization problem over the integers:

Test whether several numbers are integers:

If any number is explicitly non-integer, the result is False:

## Properties & Relations(3)

Integers contains Primes:

Integers is contained in Complexes, Reals, Algebraics, and Rationals:

IntegerQ returns True for explicit integers and False otherwise:

Element remains unevaluated when it cannot decide whether an expression is an integer:

Wolfram Research (1999), Integers, Wolfram Language function, https://reference.wolfram.com/language/ref/Integers.html (updated 2017).

#### Text

Wolfram Research (1999), Integers, Wolfram Language function, https://reference.wolfram.com/language/ref/Integers.html (updated 2017).

#### CMS

Wolfram Language. 1999. "Integers." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/Integers.html.

#### APA

Wolfram Language. (1999). Integers. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/Integers.html

#### BibTeX

@misc{reference.wolfram_2024_integers, author="Wolfram Research", title="{Integers}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/Integers.html}", note=[Accessed: 12-August-2024 ]}

#### BibLaTeX

@online{reference.wolfram_2024_integers, organization={Wolfram Research}, title={Integers}, year={2017}, url={https://reference.wolfram.com/language/ref/Integers.html}, note=[Accessed: 12-August-2024 ]}