LameEigenvalueA
LameEigenvalueA[ν,j,m]
gives the Lamé eigenvalue of order with elliptic parameter for the function LameC[ν,j,z,m].
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- The Lamé eigenvalue for successive gives the value of the parameter in the Lamé differential equation (where is the Jacobi elliptic function JacobiSN[z,m]), for which the solution is the function LameC[ν,j,z,m].
- For certain special arguments, LameEigenvalueA automatically evaluates to exact values.
- LameEigenvalueA[ν,j,0]=j2.
- LameEigenvalueA can be evaluated to arbitrary numerical precision.
- LameEigenvalueA automatically threads over lists.
Examples
open allclose allBasic Examples (2)
Scope (14)
Numerical Evaluation (5)
The precision of the output tracks the precision of the input:
LameEigenvalueA can take complex number parameters and argument:
Evaluate LameEigenvalueA efficiently at high precision:
Specific Values (2)
Value of LameEigenvalueA when and :
Value of LameEigenvalueA for and is :
For integer values of and , LameEigenvalueA is the root of a polynomial:
Visualization (5)
Plot the first five LameEigenvalueA functions:
Plot the absolute value of the LameEigenvalueA function for complex :
Plot LameEigenvalueA as a function of its first parameter :
Plot LameEigenvalueA as a function of order and elliptic parameter :
Plot the family of LameEigenvalueA functions for different values of the elliptic parameter :
Series Expansions (1)
Series expansion of LameEigenvalueA with at :
Series expansion of LameEigenvalueA with at :
Function Representations (1)
TraditionalForm formatting:
Applications (1)
LameC solves the Lamé differential equation only if the parameter is specialized to LameEigenvalueA:
Properties & Relations (2)
Use FunctionExpand to expand LameEigenvalueA for integer values of and :
LameEigenvalueA satisfies a symmetry relation for integer values of and and :
Possible Issues (1)
LameEigenvalueA is not defined if is a negative integer:
LameEigenvalueA is not defined if is not an integer:
Text
Wolfram Research (2020), LameEigenvalueA, Wolfram Language function, https://reference.wolfram.com/language/ref/LameEigenvalueA.html.
CMS
Wolfram Language. 2020. "LameEigenvalueA." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LameEigenvalueA.html.
APA
Wolfram Language. (2020). LameEigenvalueA. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LameEigenvalueA.html