MagneticPDEComponent

MagneticPDEComponent[vars,pars]

yields a magnetic PDE term with variables vars and pars.

Details

  • MagneticPDEComponent generates an equation to model magnetostatics and low-frequency electromagnetics with model variables vars and model parameters pars.
  • MagneticPDEComponent returns a sum of differential operators to be used as a part of partial differential equations:
  • MagneticPDEComponent models static magnetic fields produced by permanent magnets or magnetic and electric fields that are generated by low-frequency electric currents flowing in conductive materials.
  • MagneticPDEComponent is typically used to model electric motors, inductors and electromagnets.
  • MagneticPDEComponent creates PDE components for stationary, time, frequency and parametric analysis.
  • MagneticPDEComponent models magnetostatics and low-frequency electromagnetic phenomena with the dependent magnetic vector potential in units of [TemplateBox[{InterpretationBox[, 1], {"Wb", , "/", , "m"}, webers per meter, {{(, "Webers", )}, /, {(, "Meters", )}}}, QuantityTF]] and independent variables in units of [TemplateBox[{InterpretationBox[, 1], "m", meters, "Meters"}, QuantityTF]].
  • MagneticPDEComponent can model external currents also in the static case.
  • In the static case, when no currents are present, MagnetostaticPDEComponent should be used.
  • The vector-valued dependent variable is specified as a three-vector ={Ax1,Ax2,Ax3}.
  • Stationary variables vars are vars={[x1,,xn],{x1,,xn}}.
  • Frequency-dependent variables vars are vars={[x1,,xn],ω,{,,xn}}.
  • Time-dependent variables vars are vars={[t,x1,,xn],t,{x1,,xn}}.
  • MagneticPDEComponent provides a stationary magnetic model:
  • is the vacuum permeability in units of [TemplateBox[{InterpretationBox[, 1], {"H", , "/", , "m"}, henries per meter, {{(, "Henries", )}, /, {(, "Meters", )}}}, QuantityTF]], the magnetization vector in units of [TemplateBox[{InterpretationBox[, 1], {"A", , "/", , "m"}, amperes per meter, {{(, "Amperes", )}, /, {(, "Meters", )}}}, QuantityTF]] and the external current density vector in units of [TemplateBox[{InterpretationBox[, 1], {"A", , "/", , {"m", ^, 2}}, amperes per meter squared, {{(, "Amperes", )}, /, {(, {"Meters", ^, 2}, )}}}, QuantityTF]].
  • The magnetization vector specifies the magnetic dipole moment per unit volume within a material, indicating the strength and direction of its magnetic properties.
  • MagneticPDEComponent provides a frequency domain model:
  • [TemplateBox[{InterpretationBox[, 1], {"F", , "/", , "m"}, farads per meter, {{(, "Farads", )}, /, {(, "Meters", )}}}, QuantityTF]] is the vacuum permittivity, relative permittivity [-], electrical conductivity [TemplateBox[{InterpretationBox[, 1], {"S", , "/", , "m"}, siemens per meter, {{(, "Siemens", )}, /, {(, "Meters", )}}}, QuantityTF]], angular frequency [TemplateBox[{InterpretationBox[, 1], {"rad", , "/", , "s"}, radians per second, {{(, "Radians", )}, /, {(, "Seconds", )}}}, QuantityTF]] and the imaginary unit .
  • MagneticPDEComponent provides a time domain model:
  • An alternative model to the magnetization vector , is the remanent magnetic flux density vector in units of [TemplateBox[{InterpretationBox[, 1], {"Wb", , "/", , {"m", ^, 2}}, webers per meter squared, {{(, "Webers", )}, /, {(, {"Meters", ^, 2}, )}}}, QuantityTF]].
  • The stationary MagneticPDEComponent equation is given as:
  • is the unitless recoil permeability.
  • For linear materials, the stationary equation MagneticPDEComponent simplifies to:
  • is the unitless relative permeability.
  • can be isotropic, orthotropic or anisotropic.
  • can be a function of the magnetic field and describe nonlinear materials.
  • The units of the magnetic model terms are in [TemplateBox[{InterpretationBox[, 1], {"A", , "/", , {"m", ^, 2}}, amperes per meter squared, {{(, "Amperes", )}, /, {(, {"Meters", ^, 2}, )}}}, QuantityTF]].
  • The following parameters pars can be given:
  • parameterdefaultsymbol
    "ExternalCurrentSource"{0,}, external current density vector in [TemplateBox[{InterpretationBox[, 1], {"A", , "/", , {"m", ^, 2}}, amperes per meter squared, {{(, "Amperes", )}, /, {(, {"Meters", ^, 2}, )}}}, QuantityTF]]
    "Magnetization"{0,}, magnetization vector in [TemplateBox[{InterpretationBox[, 1], {"A", , "/", , "m"}, amperes per meter, {{(, "Amperes", )}, /, {(, "Meters", )}}}, QuantityTF]]
    "MagneticModelForm"None
    "RegionSymmetry"None
    "RelativePermeability"
  • , unitless relative permeability
  • "RemanentMagneticFluxDensity"{0,}, remanent magnetic flux density in [TemplateBox[{InterpretationBox[, 1], {"Wb", , "/", , {"m", ^, 2}}, webers per meter squared, {{(, "Webers", )}, /, {(, {"Meters", ^, 2}, )}}}, QuantityTF]]
    "Thickness"1, thickness in [TemplateBox[{InterpretationBox[, 1], "m", meters, "Meters"}, QuantityTF]]
    "VacuumPermeability", vacuum permeability in [TemplateBox[{InterpretationBox[, 1], {"H", , "/", , "m"}, henries per meter, {{(, "Henries", )}, /, {(, "Meters", )}}}, QuantityTF]]
  • Additional parameters can be specified for the frequency and time domain models:
  • parameterdefaultsymbol
    "ElectricalConductivity"1
  • , electrical conductivity in [TemplateBox[{InterpretationBox[, 1], {"S", , "/", , "m"}, siemens per meter, {{(, "Siemens", )}, /, {(, "Meters", )}}}, QuantityTF]]
  • The number of independent variables determines the dimensions of , and and the length of vectors , and .
  • The models are available in a 2D, a 2D axisymmetric and a 3D form.
  • For 3D stationary models with relative permeability , "MagneticModelForm" can be set to "FreeSpace", and with the Coulomb gauge condition, , the 3D operator simplifies to:
  • In 2D, with an out-of-plane direction, the magnetic vector potential has only a component. In the stationary linear case, the equation is given by:
  • [TemplateBox[{InterpretationBox[, 1], "m", meters, "Meters"}, QuantityTF]] is a variable denoting a "Thickness" in the direction and the dependent variable is specified as ={0,0,Az}.
  • A possible choice for the parameter "RegionSymmetry" is "Axisymmetric".
  • "Axisymmetric" region symmetry represents a truncated cylindrical coordinate system where the cylindrical coordinates are reduced by removing the angle variable as follows:
  • dimensionreductione.g. linear stationary equation
    2D
  • To solve this equation, the covariant formulation is made use of. The covariant formulation is a method in which a change of variable is applied to axisymmetric equation, given by :
  • The input specification for the parameters is exactly the same as for their corresponding operator terms.
  • If no parameters are specified, the default magnetic PDE is:
  • If the MagneticPDEComponent depends on parameters that are specified in the association pars as ,keypi,pivi,], the parameters are replaced with .

Examples

open allclose all

Basic Examples  (3)

Define a symbolic 3D magnetic PDE model with vacuum permeability and relative permeability :

Set up the default magnetic PDE model with vacuum permeability

and relative permeability :

Define a symbolic time-dependent magnetic PDE model:

Scope  (7)

Define a magnetic PDE model with a relative permeability set to 5:

Activate a magnetic PDE model:

Define a symbolic 2D out-of-plane magnetic PDE model with vacuum permeability , relative permeability and an external current in the direction:

Note that the and direction currents are not considered:

Define a symbolic 2D axisymmetric magnetic PDE model:

Note that the and direction currents are not considered:

Define a 3D free-space magnetic PDE model with relative permeability of 1:

Define a symbolic 2D-frequency magnetic PDE model:

Set up the default magnetic PDE model with vacuum permeability and relative permeability and maintain Quantity objects:

Applications  (2)

2D Stationary Analysis  (1)

To model a long wire of circular cross section, define the mesh to use:

Define a wire region:

Solve the magnetic PDE model with a uniform current density in the direction in the wire:

Visualize the magnetic field:

2D Frequency Analysis  (1)

Define the mesh to model a long copper wire of circular cross section:

Define a wire region:

Define the parameters of the model with:

Define the variables:

Define the uniform external current density in the direction:

Define the magnetic equation:

Define a zero magnetic potential condition at the exterior boundary:

Define the PDE:

Set up an angular frequency of 800 Hz:

Replace the angular frequency and solve the PDE:

Compute the electric field:

Compute the conduction current:

Extract the external current:

Compute the total current:

Visualize the total current magnitude:

Wolfram Research (2025), MagneticPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MagneticPDEComponent.html.

Text

Wolfram Research (2025), MagneticPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/MagneticPDEComponent.html.

CMS

Wolfram Language. 2025. "MagneticPDEComponent." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/MagneticPDEComponent.html.

APA

Wolfram Language. (2025). MagneticPDEComponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/MagneticPDEComponent.html

BibTeX

@misc{reference.wolfram_2024_magneticpdecomponent, author="Wolfram Research", title="{MagneticPDEComponent}", year="2025", howpublished="\url{https://reference.wolfram.com/language/ref/MagneticPDEComponent.html}", note=[Accessed: 15-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_magneticpdecomponent, organization={Wolfram Research}, title={MagneticPDEComponent}, year={2025}, url={https://reference.wolfram.com/language/ref/MagneticPDEComponent.html}, note=[Accessed: 15-January-2025 ]}