MonomialList

MonomialList[poly]

给出多项式 poly 中所有单项式的列表.

MonomialList[poly,{x1,x2,}]

给出多项式中关于变量 xi 的单项式的列表.

MonomialList[poly,{x1,x2,},order]

指定顺序的单项式.

更多信息和选项

  • 无论 poly 是否是展开形式,MonomialList 都起作用.
  • MonomialList[poly] 等价于 MonomialList[poly,Variables[poly]].
  • order 的可能设置是 "Lexicographic""DegreeLexicographic""DegreeReverseLexicographic""NegativeLexicographic""NegativeDegreeLexicographic""NegativeDegreeReverseLexicographic" 或一个显式权重矩阵.
  • 单项式按照单项式的指数向量的基排序,基是关于变量 xi 的.
  • "NegativeLexicographic" 相当于将 Sort 应用到指数向量列表中.
  • "Lexicographic" 给出 "NegativeLexicographic" 的反向顺序,是 MonomialList 的缺省设置.
  • "DegreeLexicographic" 首先按整个阶排序,然后按照 "Lexicographic" 定义的阶排序.
  • "DegreeReverseLexicographic" 首先按整个阶排序,然后反词典顺序,从最后一个变量开始.
  • "NegativeDegreeLexicographic""NegativeDegreeReverseLexicographic" 从低阶到高阶排序.
  • 一个显式的权重矩阵 w 定义 w.vi"Lexicographic" 顺序给出的一个顺序,其中 vi 是指数向量.
  • MonomialList[poly,vars,Modulus->m] 计算模 m 的系数.
  • MonomialList[poly,All,order] 等价于 MonomialList[poly,Variables[poly],order].

范例

打开所有单元关闭所有单元

基本范例  (1)

得到单项式列表:

范围  (1)

"DegreeLexicographic" 单项式顺序:

用权重矩阵指定相同的顺序:

选项  (1)

Modulus  (1)

模 2 化简系数:

属性和关系  (2)

PlusTotal 重构原多项式:

CoefficientRules 给出一个不同的表示:

"DegreeLexicographic" 得到 "NegativeDegreeReverseLexicographic"

可能存在的问题  (1)

Variables[poly] 给出的列表不总是排好序的:

Wolfram Research (2008),MonomialList,Wolfram 语言函数,https://reference.wolfram.com/language/ref/MonomialList.html.

文本

Wolfram Research (2008),MonomialList,Wolfram 语言函数,https://reference.wolfram.com/language/ref/MonomialList.html.

CMS

Wolfram 语言. 2008. "MonomialList." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/MonomialList.html.

APA

Wolfram 语言. (2008). MonomialList. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/MonomialList.html 年

BibTeX

@misc{reference.wolfram_2024_monomiallist, author="Wolfram Research", title="{MonomialList}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/MonomialList.html}", note=[Accessed: 15-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_monomiallist, organization={Wolfram Research}, title={MonomialList}, year={2008}, url={https://reference.wolfram.com/language/ref/MonomialList.html}, note=[Accessed: 15-November-2024 ]}