MonomialList
✖
MonomialList
MonomialList[poly]
给出多项式 poly 中所有单项式的列表.
MonomialList[poly,{x1,x2,…}]
给出多项式中关于变量 xi 的单项式的列表.
MonomialList[poly,{x1,x2,…},order]
指定顺序的单项式.
更多信息和选项

- 无论 poly 是否是展开形式,MonomialList 都起作用.
- MonomialList[poly] 等价于 MonomialList[poly,Variables[poly]].
- order 的可能设置是 "Lexicographic"、"DegreeLexicographic"、"DegreeReverseLexicographic"、"NegativeLexicographic"、"NegativeDegreeLexicographic"、"NegativeDegreeReverseLexicographic" 或一个显式权重矩阵.
- 单项式按照单项式的指数向量的基排序,基是关于变量 xi 的.
- "NegativeLexicographic" 相当于将 Sort 应用到指数向量列表中.
- "Lexicographic" 给出 "NegativeLexicographic" 的反向顺序,是 MonomialList 的缺省设置.
- "DegreeLexicographic" 首先按整个阶排序,然后按照 "Lexicographic" 定义的阶排序.
- "DegreeReverseLexicographic" 首先按整个阶排序,然后反词典顺序,从最后一个变量开始.
- "NegativeDegreeLexicographic" 和 "NegativeDegreeReverseLexicographic" 从低阶到高阶排序.
- 一个显式的权重矩阵 w 定义 w.vi 的 "Lexicographic" 顺序给出的一个顺序,其中 vi 是指数向量.
- MonomialList[poly,vars,Modulus->m] 计算模 m 的系数.
- MonomialList[poly,All,order] 等价于 MonomialList[poly,Variables[poly],order].
范例
打开所有单元关闭所有单元范围 (1)标准用法实例范围调查
属性和关系 (2)函数的属性及与其他函数的关联
In[1]:=1

✖
https://wolfram.com/xid/09bep5gvu-lspjtq
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/09bep5gvu-kocky6
Out[2]=2

CoefficientRules 给出一个不同的表示:
In[3]:=3

✖
https://wolfram.com/xid/09bep5gvu-bg19ko
Out[3]=3

从 "DegreeLexicographic" 得到 "NegativeDegreeReverseLexicographic":
In[1]:=1

✖
https://wolfram.com/xid/09bep5gvu-e5suh4
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/09bep5gvu-f7detb
Out[2]=2

可能存在的问题 (1)常见隐患和异常行为
Variables[poly] 给出的列表不总是排好序的:
In[1]:=1

✖
https://wolfram.com/xid/09bep5gvu-boghg
Out[1]=1

In[2]:=2

✖
https://wolfram.com/xid/09bep5gvu-hj3y5f
Out[2]=2

In[3]:=3

✖
https://wolfram.com/xid/09bep5gvu-g1uib
Out[3]=3

Wolfram Research (2008),MonomialList,Wolfram 语言函数,https://reference.wolfram.com/language/ref/MonomialList.html.
✖
Wolfram Research (2008),MonomialList,Wolfram 语言函数,https://reference.wolfram.com/language/ref/MonomialList.html.
文本
Wolfram Research (2008),MonomialList,Wolfram 语言函数,https://reference.wolfram.com/language/ref/MonomialList.html.
✖
Wolfram Research (2008),MonomialList,Wolfram 语言函数,https://reference.wolfram.com/language/ref/MonomialList.html.
CMS
Wolfram 语言. 2008. "MonomialList." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/MonomialList.html.
✖
Wolfram 语言. 2008. "MonomialList." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/MonomialList.html.
APA
Wolfram 语言. (2008). MonomialList. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/MonomialList.html 年
✖
Wolfram 语言. (2008). MonomialList. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/MonomialList.html 年
BibTeX
✖
@misc{reference.wolfram_2025_monomiallist, author="Wolfram Research", title="{MonomialList}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/MonomialList.html}", note=[Accessed: 02-April-2025
]}
BibLaTeX
✖
@online{reference.wolfram_2025_monomiallist, organization={Wolfram Research}, title={MonomialList}, year={2008}, url={https://reference.wolfram.com/language/ref/MonomialList.html}, note=[Accessed: 02-April-2025
]}