PolynomialRemainder
✖
PolynomialRemainder
Details and Options

- The degree of the result in x is guaranteed to be smaller than the degree of q.
- Unlike PolynomialMod, PolynomialRemainder performs divisions in generating its results.
- With the option Modulus->n, the remainder is computed modulo n.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Find the remainder after dividing one polynomial by another:

https://wolfram.com/xid/0dc01xkv4ft2-wlj8df

The difference of the dividend and the remainder is a polynomial multiple of the divisor:

https://wolfram.com/xid/0dc01xkv4ft2-qi5nrv

If the dividend is a multiple of the divisor, then the remainder is zero:

https://wolfram.com/xid/0dc01xkv4ft2-c94jxg

Find the remainder of division for polynomials with symbolic coefficients:

https://wolfram.com/xid/0dc01xkv4ft2-5kvosz

Coefficients of the quotient are rational functions of the input coefficients:

https://wolfram.com/xid/0dc01xkv4ft2-jd58k0

Scope (4)Survey of the scope of standard use cases
The resulting polynomial will have coefficients that are rational expressions of input coefficients:

https://wolfram.com/xid/0dc01xkv4ft2-h2awq


https://wolfram.com/xid/0dc01xkv4ft2-5mye0w


https://wolfram.com/xid/0dc01xkv4ft2-zhit9v

Polynomial remainder over the integers modulo :

https://wolfram.com/xid/0dc01xkv4ft2-5fo91b

Polynomial remainder over a finite field:

https://wolfram.com/xid/0dc01xkv4ft2-cjmue

https://wolfram.com/xid/0dc01xkv4ft2-iw6si

PolynomialRemainder also works for rational functions:

https://wolfram.com/xid/0dc01xkv4ft2-56t47m

The quotient and remainder of division of by
are
and
, where
:

https://wolfram.com/xid/0dc01xkv4ft2-rh8sfu

and
are uniquely determined by the condition that the degree of
is less than the degree of
:

https://wolfram.com/xid/0dc01xkv4ft2-bod2z6

Options (1)Common values & functionality for each option
Applications (1)Sample problems that can be solved with this function
Euclid's algorithm for the greatest common divisor:

https://wolfram.com/xid/0dc01xkv4ft2-d1x7ks

https://wolfram.com/xid/0dc01xkv4ft2-hhdxkm

https://wolfram.com/xid/0dc01xkv4ft2-d7mapl

https://wolfram.com/xid/0dc01xkv4ft2-barvpf

Divide by the leading coefficient:

https://wolfram.com/xid/0dc01xkv4ft2-cflfxk


https://wolfram.com/xid/0dc01xkv4ft2-c8coa7

Properties & Relations (3)Properties of the function, and connections to other functions
For a polynomial ,
, where
is given by PolynomialQuotient:

https://wolfram.com/xid/0dc01xkv4ft2-dbkxd7

https://wolfram.com/xid/0dc01xkv4ft2-lz5v1


https://wolfram.com/xid/0dc01xkv4ft2-h1h08b

Use Expand to verify identity:

https://wolfram.com/xid/0dc01xkv4ft2-hbesvd

To get both quotient and remainder use PolynomialQuotientRemainder:

https://wolfram.com/xid/0dc01xkv4ft2-kbxtgh

PolynomialReduce generalizes PolynomialRemainder for multivariate polynomials:

https://wolfram.com/xid/0dc01xkv4ft2-dlu8re


https://wolfram.com/xid/0dc01xkv4ft2-d5vp5u


https://wolfram.com/xid/0dc01xkv4ft2-p9vxdq

Wolfram Research (1988), PolynomialRemainder, Wolfram Language function, https://reference.wolfram.com/language/ref/PolynomialRemainder.html (updated 2023).
Text
Wolfram Research (1988), PolynomialRemainder, Wolfram Language function, https://reference.wolfram.com/language/ref/PolynomialRemainder.html (updated 2023).
Wolfram Research (1988), PolynomialRemainder, Wolfram Language function, https://reference.wolfram.com/language/ref/PolynomialRemainder.html (updated 2023).
CMS
Wolfram Language. 1988. "PolynomialRemainder." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/PolynomialRemainder.html.
Wolfram Language. 1988. "PolynomialRemainder." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/PolynomialRemainder.html.
APA
Wolfram Language. (1988). PolynomialRemainder. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PolynomialRemainder.html
Wolfram Language. (1988). PolynomialRemainder. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/PolynomialRemainder.html
BibTeX
@misc{reference.wolfram_2025_polynomialremainder, author="Wolfram Research", title="{PolynomialRemainder}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/PolynomialRemainder.html}", note=[Accessed: 16-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_polynomialremainder, organization={Wolfram Research}, title={PolynomialRemainder}, year={2023}, url={https://reference.wolfram.com/language/ref/PolynomialRemainder.html}, note=[Accessed: 16-April-2025
]}