RamanujanTauL
gives the Ramanujan tau Dirichlet L-function .
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- For
,
is given by the Dirichlet series
.
- RamanujanTauL can be evaluated to arbitrary numerical precision.
- RamanujanTauL automatically threads over lists.
Examples
open allclose allScope (18)
Numerical Evaluation (4)
Specific Values (2)
Visualization (2)
Plot the RamanujanTauL:
Plot the real part of RamanujanTauL function:
Plot the imaginary part of RamanujanTauL function:
Function Properties (10)
RamanujanTauL is defined for all real values:
Bounds on the function range of RamanujanTauL:
RamanujanTauL threads over lists:
RamanujanTauL is an analytic function of x:
RamanujanTauL is neither non-increasing nor non-decreasing:
RamanujanTauL is not injective:
RamanujanTauL is surjective:
RamanujanTauL is neither non-negative nor non-positive:
RamanujanTauL has no singularities or discontinuities:
RamanujanTauL is neither convex nor concave:
Applications (5)
Find a zero of RamanujanTauL:
Properties & Relations (4)
Approximation of RamanujanTauL using Euler product formula:
On the critical line, RamanujanTauL splits:
Text
Wolfram Research (2007), RamanujanTauL, Wolfram Language function, https://reference.wolfram.com/language/ref/RamanujanTauL.html.
CMS
Wolfram Language. 2007. "RamanujanTauL." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RamanujanTauL.html.
APA
Wolfram Language. (2007). RamanujanTauL. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RamanujanTauL.html