RamanujanTauL
✖
RamanujanTauL
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- For
,
is given by the Dirichlet series
, where
is the Ramanujan
function.
- RamanujanTauL can be evaluated to arbitrary numerical precision.
- RamanujanTauL automatically threads over lists.
Examples
open allclose allBasic Examples (2)Summary of the most common use cases
Scope (20)Survey of the scope of standard use cases
Numerical Evaluation (6)

https://wolfram.com/xid/0pniox72hyojcfab-l274ju


https://wolfram.com/xid/0pniox72hyojcfab-pmo0yc


https://wolfram.com/xid/0pniox72hyojcfab-b0wt9


https://wolfram.com/xid/0pniox72hyojcfab-zn1q5

The precision of the output tracks the precision of the input:

https://wolfram.com/xid/0pniox72hyojcfab-y7k4a


https://wolfram.com/xid/0pniox72hyojcfab-bj7l9h


https://wolfram.com/xid/0pniox72hyojcfab-hfml09

Evaluate efficiently at high precision:

https://wolfram.com/xid/0pniox72hyojcfab-di5gcr


https://wolfram.com/xid/0pniox72hyojcfab-bq2c6r

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0pniox72hyojcfab-cw18bq

Compute the elementwise values of an array:

https://wolfram.com/xid/0pniox72hyojcfab-thgd2

Or compute the matrix RamanujanTauL function using MatrixFunction:

https://wolfram.com/xid/0pniox72hyojcfab-o5jpo

Specific Values (2)

https://wolfram.com/xid/0pniox72hyojcfab-cgkwdk

Find a value of x for which RamanujanTauL[x]=0.8:

https://wolfram.com/xid/0pniox72hyojcfab-f2hrld


https://wolfram.com/xid/0pniox72hyojcfab-f1imhf

Visualization (2)
Plot the RamanujanTauL:

https://wolfram.com/xid/0pniox72hyojcfab-b1j98m

Plot the real part of RamanujanTauL function:

https://wolfram.com/xid/0pniox72hyojcfab-bxaed9

Plot the imaginary part of RamanujanTauL function:

https://wolfram.com/xid/0pniox72hyojcfab-eweler

Function Properties (10)
RamanujanTauL is defined for all real values:

https://wolfram.com/xid/0pniox72hyojcfab-cl7ele


https://wolfram.com/xid/0pniox72hyojcfab-de3irc

Bounds on the function range of RamanujanTauL:

https://wolfram.com/xid/0pniox72hyojcfab-evf2yr

RamanujanTauL threads over lists:

https://wolfram.com/xid/0pniox72hyojcfab-dae6v5

RamanujanTauL is an analytic function of x:

https://wolfram.com/xid/0pniox72hyojcfab-h5x4l2

RamanujanTauL is neither non-increasing nor non-decreasing:

https://wolfram.com/xid/0pniox72hyojcfab-g6kynf

RamanujanTauL is not injective:

https://wolfram.com/xid/0pniox72hyojcfab-gi38d7


https://wolfram.com/xid/0pniox72hyojcfab-ctca0g

RamanujanTauL is surjective:

https://wolfram.com/xid/0pniox72hyojcfab-hkqec4


https://wolfram.com/xid/0pniox72hyojcfab-hdm869

RamanujanTauL is neither non-negative nor non-positive:

https://wolfram.com/xid/0pniox72hyojcfab-84dui

RamanujanTauL has no singularities or discontinuities:

https://wolfram.com/xid/0pniox72hyojcfab-mdtl3h


https://wolfram.com/xid/0pniox72hyojcfab-mn5jws

RamanujanTauL is neither convex nor concave:

https://wolfram.com/xid/0pniox72hyojcfab-kdss3

Applications (5)Sample problems that can be solved with this function

https://wolfram.com/xid/0pniox72hyojcfab-gqi0gc

Find a zero of RamanujanTauL:

https://wolfram.com/xid/0pniox72hyojcfab-p6km1v

The number of zeros on the critical strip from 0 to :

https://wolfram.com/xid/0pniox72hyojcfab-j7pggl

https://wolfram.com/xid/0pniox72hyojcfab-8reysz


https://wolfram.com/xid/0pniox72hyojcfab-038fi2

Define and visualize the Ramanujan function:

https://wolfram.com/xid/0pniox72hyojcfab-2jev29

https://wolfram.com/xid/0pniox72hyojcfab-p5jkn1

Properties & Relations (5)Properties of the function, and connections to other functions

https://wolfram.com/xid/0pniox72hyojcfab-yudygy

https://wolfram.com/xid/0pniox72hyojcfab-11jt4n

Approximate RamanujanTauL using an Euler product formula:

https://wolfram.com/xid/0pniox72hyojcfab-kprh1b


https://wolfram.com/xid/0pniox72hyojcfab-whydbe

On the critical line, RamanujanTauL can be split into RamanujanTauTheta and RamanujanTauZ:

https://wolfram.com/xid/0pniox72hyojcfab-70byrp

Evaluate derivatives numerically:

https://wolfram.com/xid/0pniox72hyojcfab-keoz73


https://wolfram.com/xid/0pniox72hyojcfab-7ocy8q

RamanujanTauZ can be expressed using RamanujanTauL:

https://wolfram.com/xid/0pniox72hyojcfab-xeprj7

Wolfram Research (2007), RamanujanTauL, Wolfram Language function, https://reference.wolfram.com/language/ref/RamanujanTauL.html.
Text
Wolfram Research (2007), RamanujanTauL, Wolfram Language function, https://reference.wolfram.com/language/ref/RamanujanTauL.html.
Wolfram Research (2007), RamanujanTauL, Wolfram Language function, https://reference.wolfram.com/language/ref/RamanujanTauL.html.
CMS
Wolfram Language. 2007. "RamanujanTauL." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RamanujanTauL.html.
Wolfram Language. 2007. "RamanujanTauL." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RamanujanTauL.html.
APA
Wolfram Language. (2007). RamanujanTauL. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RamanujanTauL.html
Wolfram Language. (2007). RamanujanTauL. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RamanujanTauL.html
BibTeX
@misc{reference.wolfram_2025_ramanujantaul, author="Wolfram Research", title="{RamanujanTauL}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/RamanujanTauL.html}", note=[Accessed: 21-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_ramanujantaul, organization={Wolfram Research}, title={RamanujanTauL}, year={2007}, url={https://reference.wolfram.com/language/ref/RamanujanTauL.html}, note=[Accessed: 21-April-2025
]}