gives the Ramanujan tau Dirichlet L-function .


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • For Re(s)>6, is given by the Dirichlet series .
  • RamanujanTauL can be evaluated to arbitrary numerical precision.
  • RamanujanTauL automatically threads over lists.


open allclose all

Basic Examples  (2)

Evaluate numerically:

Plot over a subset of the reals:

Scope  (11)

Numerical Evaluation  (4)

Evaluate numerically:

Evaluate to high precision:

The precision of the output tracks the precision of the input:

Complex number inputs:

Evaluate efficiently at high precision:

Specific Values  (2)

Value at zero:

Find a value of x for which RamanujanTauL[x]=0.8:

Visualization  (2)

Plot the RamanujanTauL:

Plot the real part of RamanujanTauL function:

Plot the imaginary part of RamanujanTauL function:

Function Properties  (3)

RamanujanTauL is defined for all real values:

Complex domain:

Bounds on the function range of RamanujanTauL:

RamanujanTauL threads over lists:

Applications  (5)

Plot on the critical line:

Find a zero of RamanujanTauL:

The number of zeros on the critical strip from 0 to :

Plot of the real part:

Ramanujan function:

Properties & Relations  (4)

Functional equation:

Approximation of RamanujanTauL using Euler product formula:

On the critical line, RamanujanTauL splits:

Evaluate derivatives numerically:

Introduced in 2007