RamanujanTauTheta
gives the Ramanujan tau theta function .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- for real .
- arises in the study of the Ramanujan L-function on the critical line. It is closely related to the number of zeros of for .
- Apart from a sign, gives the phase of the Ramanujan L-function .
- is an analytic function of except for branch cuts on the imaginary axis running from to .
- For certain special arguments, RamanujanTauTheta automatically evaluates to exact values.
- RamanujanTauTheta can be evaluated to arbitrary numerical precision.
- RamanujanTauTheta automatically threads over lists.
Examples
open allclose allBasic Examples (6)
Plot over a subset of the reals:
Plot over a subset of the complexes:
Series expansion at the origin:
Series expansion at Infinity:
Scope (27)
Numerical Evaluation (7)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix RamanujanTauTheta function using MatrixFunction:
Specific Values (2)
Visualization (2)
Plot the RamanujanTauTheta:
Plot the real part of RamanujanTauTheta function:
Plot the imaginary part of RamanujanTauTheta function:
Function Properties (10)
RamanujanTauTheta is defined for all real values:
Function range of RamanujanTauTheta:
RamanujanTauTheta threads over lists:
RamanujanTauTheta is an analytic function of x:
RamanujanTauTheta is neither non-increasing nor non-decreasing:
RamanujanTauTheta is not injective:
RamanujanTauTheta is surjective:
RamanujanTauTheta is neither non-negative nor non-positive:
RamanujanTauTheta has no singularities or discontinuities:
RamanujanTauTheta is neither convex nor concave:
Differentiation (2)
Applications (4)
Contour plot of the absolute value of RamanujanTauTheta:
The first 10 Gram points of RamanujanTauL:
Plot of RamanujanTauZ and Gram points:
Show interlacing of the roots of Sin[RamanujanTauTheta[t] and RamanujanTauZ[t]:
Properties & Relations (3)
RamanujanTauTheta is related to LogGamma:
On the critical line, RamanujanTauTheta gives the phase of RamanujanTauL up to a sign:
RamanujanTauZ can be expressed in terms of RamanujanTauTheta and RamanujanTauL:
Neat Examples (2)
Text
Wolfram Research (2007), RamanujanTauTheta, Wolfram Language function, https://reference.wolfram.com/language/ref/RamanujanTauTheta.html.
CMS
Wolfram Language. 2007. "RamanujanTauTheta." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RamanujanTauTheta.html.
APA
Wolfram Language. (2007). RamanujanTauTheta. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RamanujanTauTheta.html