RussellRaoDissimilarity

RussellRaoDissimilarity[u,v]

给出在布尔向量 uv 之间的 RussellRao相异度.

更多信息

范例

打开所有单元关闭所有单元

基本范例  (2)

两布尔向量之间的 RussellRao 相异度:

元素也可以是 TrueFalse

范围  (2)

计算等长度的由 01 组成的任意向量间的相异度:

计算等长度的由 TrueFalse 组成的任意向量间的相异度:

属性和关系  (4)

RussellRao 相异度介于0和1之间:

RussellRaoDissimilarity 大于或等于 JaccardDissimilarity:

RussellRaoDissimilarity 大于或等于 MatchingDissimilarity:

RussellRaoDissimilarity 大于或等于 DiceDissimilarity:

Wolfram Research (2007),RussellRaoDissimilarity,Wolfram 语言函数,https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html.

文本

Wolfram Research (2007),RussellRaoDissimilarity,Wolfram 语言函数,https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html.

CMS

Wolfram 语言. 2007. "RussellRaoDissimilarity." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html.

APA

Wolfram 语言. (2007). RussellRaoDissimilarity. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html 年

BibTeX

@misc{reference.wolfram_2024_russellraodissimilarity, author="Wolfram Research", title="{RussellRaoDissimilarity}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html}", note=[Accessed: 18-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_russellraodissimilarity, organization={Wolfram Research}, title={RussellRaoDissimilarity}, year={2007}, url={https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html}, note=[Accessed: 18-November-2024 ]}