gives the Russell–Rao dissimilarity between Boolean vectors u and v.


RussellRaoDissimilarity
gives the Russell–Rao dissimilarity between Boolean vectors u and v.
Details

- RussellRaoDissimilarity works for both True, False vectors and 0, 1 vectors.
- RussellRaoDissimilarity[u,v] is equivalent to (n10+n01+n00)/Length[u], where
is the number of corresponding pairs of elements in u and v respectively equal to i and j.
Examples
open all close allBasic Examples (2)
Scope (2)
Properties & Relations (4)
Russell–Rao dissimilarity is bounded by 0 and 1:
RussellRaoDissimilarity is greater than or equal to JaccardDissimilarity:
RussellRaoDissimilarity is greater than or equal to MatchingDissimilarity:
RussellRaoDissimilarity is greater than or equal to DiceDissimilarity:
Tech Notes
Related Guides
History
Text
Wolfram Research (2007), RussellRaoDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html.
CMS
Wolfram Language. 2007. "RussellRaoDissimilarity." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html.
APA
Wolfram Language. (2007). RussellRaoDissimilarity. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html
BibTeX
@misc{reference.wolfram_2025_russellraodissimilarity, author="Wolfram Research", title="{RussellRaoDissimilarity}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html}", note=[Accessed: 18-August-2025]}
BibLaTeX
@online{reference.wolfram_2025_russellraodissimilarity, organization={Wolfram Research}, title={RussellRaoDissimilarity}, year={2007}, url={https://reference.wolfram.com/language/ref/RussellRaoDissimilarity.html}, note=[Accessed: 18-August-2025]}