WOLFRAM

gives the Dice dissimilarity between Boolean vectors x and y.

Details

  • DiceDissimilarity works for both True, False vectors and 0, 1 vectors.
  • DiceDissimilarity[u,v] is equivalent to (n10+n01)/(2n11+n10+n01), where nij is the number of corresponding pairs of elements in u and v respectively equal to i and j.

Examples

open allclose all

Basic Examples  (2)Summary of the most common use cases

Dice dissimilarity between two 0, 1 vectors:

Out[1]=1

Dice dissimilarity between two Boolean vectors:

Out[1]=1

Scope  (2)Survey of the scope of standard use cases

Compute dissimilarity between any 0, 1 vectors of equal length:

Out[1]=1

Compute dissimilarity between any True, False vectors of equal length:

Out[1]=1

Applications  (2)Sample problems that can be solved with this function

Cluster binary data using Dice dissimilarity:

Out[1]=1

Cluster True, False data using Dice dissimilarity:

Out[1]=1

Properties & Relations  (4)Properties of the function, and connections to other functions

Dice dissimilarity is bounded by 0 and 1:

Out[1]=1
Out[2]=2

DiceDissimilarity is less than or equal to JaccardDissimilarity:

Out[2]=2

DiceDissimilarity is less than or equal to SokalSneathDissimilarity:

Out[2]=2

DiceDissimilarity is less than or equal to RussellRaoDissimilarity:

Out[2]=2
Wolfram Research (2007), DiceDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/DiceDissimilarity.html.
Wolfram Research (2007), DiceDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/DiceDissimilarity.html.

Text

Wolfram Research (2007), DiceDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/DiceDissimilarity.html.

Wolfram Research (2007), DiceDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/DiceDissimilarity.html.

CMS

Wolfram Language. 2007. "DiceDissimilarity." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiceDissimilarity.html.

Wolfram Language. 2007. "DiceDissimilarity." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/DiceDissimilarity.html.

APA

Wolfram Language. (2007). DiceDissimilarity. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiceDissimilarity.html

Wolfram Language. (2007). DiceDissimilarity. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/DiceDissimilarity.html

BibTeX

@misc{reference.wolfram_2024_dicedissimilarity, author="Wolfram Research", title="{DiceDissimilarity}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/DiceDissimilarity.html}", note=[Accessed: 20-December-2024 ]}

@misc{reference.wolfram_2024_dicedissimilarity, author="Wolfram Research", title="{DiceDissimilarity}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/DiceDissimilarity.html}", note=[Accessed: 20-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_dicedissimilarity, organization={Wolfram Research}, title={DiceDissimilarity}, year={2007}, url={https://reference.wolfram.com/language/ref/DiceDissimilarity.html}, note=[Accessed: 20-December-2024 ]}

@online{reference.wolfram_2024_dicedissimilarity, organization={Wolfram Research}, title={DiceDissimilarity}, year={2007}, url={https://reference.wolfram.com/language/ref/DiceDissimilarity.html}, note=[Accessed: 20-December-2024 ]}