YuleDissimilarity

YuleDissimilarity[u,v]

gives the Yule dissimilarity between Boolean vectors u and v.

Details

Examples

open allclose all

Basic Examples  (2)

Yule dissimilarity between two Boolean vectors:

The elements can also be True and False:

Scope  (2)

Compute dissimilarity between any 0, 1 vectors of equal length:

Compute dissimilarity between any True, False vectors of equal length:

Applications  (2)

Cluster 0, 1 data using Yule dissimilarity:

Cluster True, False data using Yule dissimilarity:

Properties & Relations  (1)

Yule dissimilarity is bounded by 0 and 2:

Wolfram Research (2007), YuleDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/YuleDissimilarity.html.

Text

Wolfram Research (2007), YuleDissimilarity, Wolfram Language function, https://reference.wolfram.com/language/ref/YuleDissimilarity.html.

BibTeX

@misc{reference.wolfram_2020_yuledissimilarity, author="Wolfram Research", title="{YuleDissimilarity}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/YuleDissimilarity.html}", note=[Accessed: 02-December-2020 ]}

BibLaTeX

@online{reference.wolfram_2020_yuledissimilarity, organization={Wolfram Research}, title={YuleDissimilarity}, year={2007}, url={https://reference.wolfram.com/language/ref/YuleDissimilarity.html}, note=[Accessed: 02-December-2020 ]}

CMS

Wolfram Language. 2007. "YuleDissimilarity." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/YuleDissimilarity.html.

APA

Wolfram Language. (2007). YuleDissimilarity. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/YuleDissimilarity.html