SavitzkyGolayMatrix
✖
SavitzkyGolayMatrix
gives a matrix corresponding to a smoothing kernel of radius r for performing polynomial regression of degree k.
gives a matrix for performing polynomial regression of degree k1 over a window of radius r1 along rows, and degree k2 over a window of radius r2 along columns.
gives a matrix for performing the n derivative of a polynomial regression of degree k.
gives an array using the specified parameters for each direction i.
Details and Options

- SavitzkyGolayMatrix[r,k] can be used to smooth data using a local polynomial regression.
- SavitzkyGolayMatrix[r,k,n] can be used to compute the derivatives of data using a local polynomial regression.
- The elements of SavitzkyGolayMatrix[r,k] sum to 1.
- SavitzkyGolayMatrix allows any of r, k, and n to be lists, specifying different values for different directions.
- For integer r, SavitzkyGolayMatrix[r,…] yields a
×
matrix.
- For noninteger r, the value of r is effectively rounded to an integer.
- SavitzkyGolayMatrix accepts a WorkingPrecision option. The default setting is WorkingPrecision->MachinePrecision.
- SavitzkyGolayMatrix can be used in functions such as ListConvolve and ImageConvolve.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Compute a matrix kernel for quadratic interpolation over a window of radius 5:

https://wolfram.com/xid/0rbwyufk3vwcp620zh07m-0ncnyn

Compute a smoothing kernel of length 11 using a cubic interpolation:

https://wolfram.com/xid/0rbwyufk3vwcp620zh07m-22u2gu


https://wolfram.com/xid/0rbwyufk3vwcp620zh07m-q6s93b

A Savitzky–Golay matrix to compute first derivatives in the horizontal dimension:

https://wolfram.com/xid/0rbwyufk3vwcp620zh07m-hr9xln

Scope (3)Survey of the scope of standard use cases
Options (1)Common values & functionality for each option
Applications (2)Sample problems that can be solved with this function
Use a 2D SavitzkyGolayMatrix as a smoothing kernel in ImageConvolve:

https://wolfram.com/xid/0rbwyufk3vwcp620zh07m-6rinpk

Compute the horizontal derivative of an image:

https://wolfram.com/xid/0rbwyufk3vwcp620zh07m-65ej4n

Wolfram Research (2014), SavitzkyGolayMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/SavitzkyGolayMatrix.html.
Text
Wolfram Research (2014), SavitzkyGolayMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/SavitzkyGolayMatrix.html.
Wolfram Research (2014), SavitzkyGolayMatrix, Wolfram Language function, https://reference.wolfram.com/language/ref/SavitzkyGolayMatrix.html.
CMS
Wolfram Language. 2014. "SavitzkyGolayMatrix." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SavitzkyGolayMatrix.html.
Wolfram Language. 2014. "SavitzkyGolayMatrix." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/SavitzkyGolayMatrix.html.
APA
Wolfram Language. (2014). SavitzkyGolayMatrix. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SavitzkyGolayMatrix.html
Wolfram Language. (2014). SavitzkyGolayMatrix. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/SavitzkyGolayMatrix.html
BibTeX
@misc{reference.wolfram_2025_savitzkygolaymatrix, author="Wolfram Research", title="{SavitzkyGolayMatrix}", year="2014", howpublished="\url{https://reference.wolfram.com/language/ref/SavitzkyGolayMatrix.html}", note=[Accessed: 25-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_savitzkygolaymatrix, organization={Wolfram Research}, title={SavitzkyGolayMatrix}, year={2014}, url={https://reference.wolfram.com/language/ref/SavitzkyGolayMatrix.html}, note=[Accessed: 25-April-2025
]}