WaveletPsi

WaveletPsi[wave,x]

gives the wavelet function for the symbolic wavelet wave evaluated at x.

WaveletPsi[wave]

gives the wavelet function as a pure function.

Details and Options

  • The wavelet function satisfies the recursion equation , where is the scaling function and are the high-pass filter coefficients.
  • A discrete wavelet transform effectively represents a signal in terms of scaled and translated wavelet functions , where .
  • WaveletPsi[wave,x,"Dual"] gives the dual wavelet function for biorthogonal wavelets such as BiorthogonalSplineWavelet and ReverseBiorthogonalSplineWavelet.
  • The dual wavelet function satisfies the recursion equation , where are the dual high-pass filter coefficients.
  • The following options can be used:
  • MaxRecursion 8number of recursive iterations to use
    WorkingPrecision MachinePrecisionprecision to use in internal computations

Examples

open allclose all

Basic Examples  (3)

Haar wavelet function:

Daubechies wavelet function:

Mexican hat wavelet function:

Scope  (5)

Compute primal wavelet function:

Dual wavelet function:

Wavelet function for discrete wavelets, including HaarWavelet:

DaubechiesWavelet:

SymletWavelet:

CoifletWavelet:

BiorthogonalSplineWavelet:

ReverseBiorthogonalSplineWavelet:

CDFWavelet:

ShannonWavelet:

BattleLemarieWavelet:

MeyerWavelet:

Wavelet function for continuous wavelets, including DGaussianWavelet:

MexicanHatWavelet:

GaborWavelet:

ShannonWavelet:

MorletWavelet:

PaulWavelet:

Multivariate scaling and wavelet functions are products of univariate ones:

Options  (3)

MaxRecursion  (1)

Plot wavelet function using different levels of recursion:

WorkingPrecision  (2)

By default WorkingPrecision->MachinePrecision is used:

Use higher-precision filter computation:

Properties & Relations  (4)

Wavelet function integrates to zero :

satisfies the recursion equation :

Plot the components and the sum of the recursion:

Frequency response for is given by :

The filter is a high-pass filter:

Fourier transform of is given by :

Neat Examples  (1)

Plot translates and dilations of wavelet function:

Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.

Text

Wolfram Research (2010), WaveletPsi, Wolfram Language function, https://reference.wolfram.com/language/ref/WaveletPsi.html.

CMS

Wolfram Language. 2010. "WaveletPsi." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/WaveletPsi.html.

APA

Wolfram Language. (2010). WaveletPsi. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WaveletPsi.html

BibTeX

@misc{reference.wolfram_2024_waveletpsi, author="Wolfram Research", title="{WaveletPsi}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/WaveletPsi.html}", note=[Accessed: 30-December-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_waveletpsi, organization={Wolfram Research}, title={WaveletPsi}, year={2010}, url={https://reference.wolfram.com/language/ref/WaveletPsi.html}, note=[Accessed: 30-December-2024 ]}