BattleLemarieWavelet
✖
BattleLemarieWavelet
represents the Battle–Lemarié wavelet of order n evaluated on equally spaced interval {-10,10}.
represents the Battle–Lemarié wavelet of order n evaluated on equally spaced interval {-lim,lim}.
Details

- BattleLemarieWavelet defines a family of orthogonal wavelets based on orthonormalization of B-splines of degree n.
- BattleLemarieWavelet[n] is equivalent to BattleLemarieWavelet[n,10].
- The scaling function (
) and wavelet function (
) have infinite support with an exponential decay outside the interval -lim to lim. The functions are
continuously differentiable.
- BattleLemarieWavelet can be used with such functions as DiscreteWaveletTransform, WaveletPhi, etc.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-4lu6z4


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-kcilqx


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-b0xj5n


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-exatgm


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-bwbc06

Scope (9)Survey of the scope of standard use cases
Basic Uses (4)
Compute primal lowpass filter coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-knpxcc

Primal highpass filter coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-fx28gt

Battle–Lemarié scaling function of order 2:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-vl9zbf

Battle–Lemarié scaling function of order 5:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-4ybkxk

Battle–Lemarié wavelet function of order 2:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-5oc3h8

Battle–Lemarié wavelet function of order 5:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-hr24zd

Wavelet Transforms (4)
Compute a DiscreteWaveletTransform:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-t8skl0

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-8smgf7


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-59wiq3

View the tree of wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-td6tmt

Get the dimensions of wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-mrjnjd

Plot the wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-w7te5

BattleLemarieWavelet can be used to perform a DiscreteWaveletPacketTransform:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-3wocue

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-22i9c

View the tree of wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-nwhfbi

Get the dimensions of wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-wuwmcl

Plot the wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-15wf00

BattleLemarieWavelet can be used to perform a StationaryWaveletTransform:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-h4s71h

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-lgbd1m
View the tree of wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-jbb9sz

Get the dimensions of wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-msff83

Plot the wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-yakm1p

BattleLemarieWavelet can be used to perform a StationaryWaveletPacketTransform:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-gbl37f

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-4fxpz9
View the tree of wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-9rgpx

Get the dimensions of wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-ngfrzh

Plot the wavelet coefficients:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-q5dqbp

Higher Dimensions (1)
Multivariate scaling and wavelet functions are products of univariate ones:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-rk8e1w

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-tvf11


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-yf2o9


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-s16yjj


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-gmiius

Properties & Relations (11)Properties of the function, and connections to other functions
Lowpass filter coefficients approximately sum to unity; :

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-bs7miu

Highpass filter coefficients approximately sum to zero; :

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-jaf8rr

Scaling function integrates to unity; :

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-hbb7

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-7n8xl2

Wavelet function integrates to zero; :

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-29ja4i

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-7j8ngf

For even order n, scaling function is symmetrical about 1/2:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-hul8b9

For even order n, wavelet function is antisymmetrical about 1/2:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-5sdm7w

For odd order n, scaling function is symmetrical about 0:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-ukjz2w

For odd order n, wavelet function is symmetrical about 1/2:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-pvtxlt

satisfies the recursion equation
:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-yjbxzh

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-h6wmys
Plot the components and the sum of the recursion:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-c986c4

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-jgy4v3

satisfies the recursion equation
:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-3enc2f

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-bux40a
Plot the components and the sum of the recursion:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-4clwfm

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-p99dtx

Frequency response for is given by
:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-y5x0mm
The filter is a lowpass filter:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-za6vn3

Frequency response for is given by
:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-fujnuf
The filter is a highpass filter:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-s5vizp

Fourier transform of is given by
:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-idptzz

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-u0b6k1

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-z65kgr

Fourier transform of is given by
:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-4ndhmw

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-8z0zd4

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-hyy32u

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-f7zvgz

Possible Issues (1)Common pitfalls and unexpected behavior
BattleLemarieWavelet is restricted to n less than 15:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-5wyn6y


BattleLemarieWavelet is not defined when n is not a positive machine integer:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-2551ne


Neat Examples (2)Surprising or curious use cases
Plot translates and dilations of scaling function:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-yz9dxl

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-evsjio


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-p5xgws

Plot translates and dilations of wavelet function:

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-iu0uje

https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-b9ooxs


https://wolfram.com/xid/0ejtb1f0liytxkecyq7xy-hts69i

Wolfram Research (2010), BattleLemarieWavelet, Wolfram Language function, https://reference.wolfram.com/language/ref/BattleLemarieWavelet.html.
Text
Wolfram Research (2010), BattleLemarieWavelet, Wolfram Language function, https://reference.wolfram.com/language/ref/BattleLemarieWavelet.html.
Wolfram Research (2010), BattleLemarieWavelet, Wolfram Language function, https://reference.wolfram.com/language/ref/BattleLemarieWavelet.html.
CMS
Wolfram Language. 2010. "BattleLemarieWavelet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BattleLemarieWavelet.html.
Wolfram Language. 2010. "BattleLemarieWavelet." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BattleLemarieWavelet.html.
APA
Wolfram Language. (2010). BattleLemarieWavelet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BattleLemarieWavelet.html
Wolfram Language. (2010). BattleLemarieWavelet. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BattleLemarieWavelet.html
BibTeX
@misc{reference.wolfram_2025_battlelemariewavelet, author="Wolfram Research", title="{BattleLemarieWavelet}", year="2010", howpublished="\url{https://reference.wolfram.com/language/ref/BattleLemarieWavelet.html}", note=[Accessed: 21-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_battlelemariewavelet, organization={Wolfram Research}, title={BattleLemarieWavelet}, year={2010}, url={https://reference.wolfram.com/language/ref/BattleLemarieWavelet.html}, note=[Accessed: 21-April-2025
]}