WeierstrassSigma
WeierstrassSigma[u,{g2,g3}]
gives the Weierstrass sigma function .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- WeierstrassSigma is related to WeierstrassZeta through the differential equation .
- WeierstrassSigma is not periodic and is therefore not strictly an elliptic function.
- WeierstrassSigma[u,{g2,g3}] is an entire function of u with no branch cut discontinuities.
- For certain special arguments, WeierstrassSigma automatically evaluates to exact values.
- WeierstrassSigma can be evaluated to arbitrary numerical precision.
- WeierstrassSigma can be used with CenteredInterval objects. »
Examples
open allclose allBasic Examples (4)
Scope (30)
Numerical Evaluation (7)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
WeierstrassSigma can be used with CenteredInterval objects:
Compute average case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix WeierstrassSigma function using MatrixFunction:
Specific Values (5)
WeierstrassSigma automatically evaluates to simpler functions for certain parameters:
WeierstrassSigma evaluates to zero at the periods of WeierstrassP:
Values of WeierstrassSigma at the half-periods of WeierstrassP:
Find the first positive maximum of WeierstrassSigma[x,1/2,1/2]:
Visualization (2)
Plot the WeierstrassSigma function for various parameters:
Function Properties (11)
WeierstrassSigma is defined for all real and complex inputs:
Approximate function range of :
WeierstrassSigma is an odd function with respect to x:
WeierstrassSigma threads elementwise over lists in its first argument:
It has no singularities or discontinuities:
is neither nondecreasing nor nonincreasing:
is neither non-negative nor non-positive:
is neither convex nor concave:
TraditionalForm formatting:
Differentiation (2)
Series Expansions (3)
Find the Taylor expansion using Series:
Plots of the first three approximations around :
Applications (2)
The system of coupled nonlinear differential equations for a heavy symmetric top:
The solutions can be expressed through Weierstrass sigma and zeta functions:
Numerically check the correctness of the solutions:
Form any elliptic function with given periods, poles and zeros as a rational function of WeierstrassSigma:
Form an elliptic function with a single and a double zero and a triple pole:
Properties & Relations (2)
Neat Examples (1)
Plot WeierstrassSigma over the complex plane:
Text
Wolfram Research (1996), WeierstrassSigma, Wolfram Language function, https://reference.wolfram.com/language/ref/WeierstrassSigma.html (updated 2023).
CMS
Wolfram Language. 1996. "WeierstrassSigma." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/WeierstrassSigma.html.
APA
Wolfram Language. (1996). WeierstrassSigma. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/WeierstrassSigma.html