ZetaZero

ZetaZero[k]

represents the k^(th) zero of the Riemann zeta function on the critical line.

ZetaZero[k,t]

represents the k^(th) zero with imaginary part greater than t.

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • For positive k, ZetaZero[k] represents the zero of on the critical line that has the k^(th) smallest positive imaginary part.
  • For negative k, ZetaZero[k] represents zeros with progressively larger negative imaginary parts.
  • N[ZetaZero[k]] gives a numerical approximation to the specified zero.
  • ZetaZero can be evaluated to arbitrary numerical precision.
  • ZetaZero automatically threads over lists.

Examples

open allclose all

Basic Examples  (3)

Find numerically the position of the first zero:

Symbolic property:

Display zeros of the Im[Zeta[1/2+z]] function:

Scope  (8)

Numerical Evaluation  (3)

Evaluate numerically:

Evaluate to high precision:

Evaluate efficiently at high precision:

Specific Values  (3)

The first three zeros:

Find the first zero of Zeta[1/2+ x] using FindRoot:

ZetaZero threads elementwise over lists:

Visualization  (2)

Display zeros of Im[Zeta[1/2+ z]] function:

Show the first zero greater than 15:

Generalizations & Extensions  (1)

Negative order is interpreted as a reflected root of the Zeta function:

Applications  (4)

Plot distances between successive zeros:

Visualize the first 10 zeros:

Compute Gram points:

Show good Gram points, where RiemannSiegelZ changes sign for consecutive points:

Show a bad Gram point:

First occurrence of Lehmer's phenomenon:

Properties & Relations  (1)

Possible Issues  (1)

ZetaZero[0] is not defined:

Introduced in 2007
 (6.0)