RiemannSiegelZ
gives the Riemann–Siegel function .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- , where is the Riemann–Siegel theta function, and is the Riemann zeta function.
- for real .
- is an analytic function of except for branch cuts on the imaginary axis running from to .
- For certain special arguments, RiemannSiegelZ automatically evaluates to exact values.
- RiemannSiegelZ can be evaluated to arbitrary numerical precision.
- RiemannSiegelZ automatically threads over lists.
- RiemannSiegelZ can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (6)
Scope (27)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
RiemannSiegelZ can be used with Interval and CenteredInterval objects:
Compute the elementwise values of an array:
Or compute the matrix RiemannSiegelZ function using MatrixFunction:
Specific Values (2)
Visualization (3)
Plot the RiemannSiegelZ:
Plot the real part of the RiemannSiegelZ function:
Plot the imaginary part of the RiemannSiegelZ function:
Plot the real part of the RiemannSiegelZ function:
Plot the imaginary part of the RiemannSiegelZ function:
Function Properties (11)
RiemannSiegelZ is defined for all real values:
RiemannSiegelZ is defined through the identity:
RiemannSiegelZ threads elementwise over lists:
RiemannSiegelZ is an analytic function of x:
RiemannSiegelZ is neither non-increasing nor non-decreeing:
RiemannSiegelZ is not injective:
RiemannSiegelZ is neither non-negative nor non-positive:
RiemannSiegelZ does not have singularity or discontinuity:
RiemannSiegelZ is neither convex nor concave:
TraditionalForm formatting:
Differentiation (3)
Series Expansions (2)
Find the Taylor expansion using Series:
Applications (6)
Plot real and imaginary parts over the complex plane:
View on the branch cut along the imaginary axis:
Find a zero of RiemannSiegelZ using FindRoot:
Or using ZetaZero:
Find several zeros:
Plot curves of vanishing real and imaginary parts of RiemannSiegelZ:
A version of the Riemann hypothesis requires the limit of as to vanish:
Plot double logarithmically the value of the integral:
Calculate a "signal power" of the Riemann zeta function along the critical line:
Plot the difference from the asymptotic value:
Show interlacing of the roots of Sin[RiemannSiegelTheta[t]] and RiemannSiegelZ[t]:
Properties & Relations (2)
Relation to the Riemann zeta function:
Numerically find a root of a transcendental equation:
Possible Issues (2)
A larger setting for $MaxExtraPrecision can be needed:
Machine-number inputs can give high‐precision results:
Neat Examples (3)
Text
Wolfram Research (1991), RiemannSiegelZ, Wolfram Language function, https://reference.wolfram.com/language/ref/RiemannSiegelZ.html (updated 2023).
CMS
Wolfram Language. 1991. "RiemannSiegelZ." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/RiemannSiegelZ.html.
APA
Wolfram Language. (1991). RiemannSiegelZ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/RiemannSiegelZ.html