WOLFRAM SYSTEM MODELER
ResistorMultiphase linear resistor |
SystemModel["Modelica.Electrical.QuasiStationary.MultiPhase.Basic.Resistor"]
This information is part of the Modelica Standard Library maintained by the Modelica Association.
The linear resistor connects the complex voltages v
with the complex
currents i
by i*R = v
,
using m
single phase Resistors.
The resistor model also has m
optional
conditional heat ports.
A linear temperature dependency of the resistances for enabled heat ports is also taken into account.
Resistor, Conductor, Capacitor, Inductor, Impedance, Admittance, Variable resistor, Variable conductor, Variable capacitor, Variable inductor, Variable impedance, Variable admittance
mh |
Value: m Type: Integer Description: Number of heatPorts=number of phases |
---|---|
useHeatPort |
Value: false Type: Boolean Description: =true, if all heat ports are enabled |
T |
Value: T_ref Type: Temperature[mh] (K) Description: Fixed device temperatures if useHeatPort = false |
R_ref |
Value: Type: Resistance[m] (Ω) Description: Reference resistances at T_ref |
T_ref |
Value: fill(293.15, m) Type: Temperature[m] (K) Description: Reference temperatures |
alpha_ref |
Value: zeros(m) Type: LinearTemperatureCoefficient[m] (1/K) Description: Temperature coefficient of resistance (R_actual = R_ref*(1 + alpha_ref*(heatPort.T - T_ref)) |
plug_p |
Type: PositivePlug Description: Positive quasi-static polyphase plug |
|
---|---|---|
plug_n |
Type: NegativePlug Description: Negative quasi-static polyphase plug |
|
heatPort |
Type: HeatPort_a[mh] Description: Conditional heat ports |
v |
Type: ComplexVoltage[m] Description: Complex voltage |
|
---|---|---|
i |
Type: ComplexCurrent[m] Description: Complex current |
|
plugToPins_p |
Type: PlugToPins_p |
|
plugToPins_n |
Type: PlugToPins_n |
|
resistor |
Type: Resistor[m] |
Modelica.Electrical.QuasiStationary.Machines.Examples Transformer test bench |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Examples |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.Components Multi phase inductance |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.Components Comparison of equivalent circuits of eddy current loss models |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.InductionMachines Characteristic curves of induction machine with slip rings |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines Test example: PermanentMagnetSynchronousMachine with inverter |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines Test example: PermanentMagnetSynchronousMachine fed by current source |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines Test example: PermanentMagnetSynchronousMachine, investigating maximum torque per Amps |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Examples.BasicMachines.SynchronousMachines Test example: Synchronous reluctance machine fed by current source |
Modelica.Electrical.QuasiStationary.Machines.Interfaces Partial model of three-phase transformer |
|
Modelica.Electrical.QuasiStationary.MultiPhase.Basic Resistance connection of star points |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components Symmetric winding model coupling electrical and magnetic domain |
|
SymmetricMultiPhaseCageWinding Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components Symmetrical rotor cage |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.BasicMachines.Components Rotor cage with saliency in d- and q-axis |
|
Modelica.Magnetic.QuasiStatic.FundamentalWave.Utilities Rheostat which is shortened after a given time |