WOLFRAM SYSTEMMODELER

VoluminousWheel

Visualizing a voluminous wheel

Diagram

Wolfram Language

In[1]:=
Click for copyable input
SystemModel["Modelica.Mechanics.MultiBody.Visualizers.VoluminousWheel"]
Out[1]:=

Information

This information is part of the Modelica Standard Library maintained by the Modelica Association.

Model VoluminousWheel provides a simple visualization of a tire using a torus and a pipe shape object. The center of the wheel is located at connector frame_a (visualized by the red coordinate system in the figure below).

Connectors (1)

frame_a

Type: Frame_a

Description: Coordinate system in which visualization data is resolved

Parameters (14)

animation

Value: true

Type: Boolean

Description: = true, if animation shall be enabled

rTire

Value: 0.25

Type: Radius (m)

Description: Radius of the tire

rRim

Value: 0.14

Type: Radius (m)

Description: Radius of the rim

width

Value: 0.25

Type: Radius (m)

Description: Width of the tire

rCurvature

Value: 0.30

Type: Radius (m)

Description: Radius of the curvature of the tire

color

Value: {64, 64, 64}

Type: RealColor

Description: Color of tire

specularCoefficient

Value: 0.5

Type: SpecularCoefficient

Description: Reflection of ambient light (= 0: light is completely absorbed)

n_rTire

Value: 40

Type: Integer

Description: Number of points along rTire

n_rCurvature

Value: 20

Type: Integer

Description: Number of points along rCurvature

rw

Value: width / 2

Type: Radius (m)

Description:

rCurvature2

Value: if rCurvature > rw then rCurvature else rw

Type: Radius (m)

Description:

h

Value: sqrt(1 - rw / rCurvature2 * (rw / rCurvature2)) * rCurvature2

Type: Radius (m)

Description:

ri

Value: rTire - rCurvature2

Type: Radius (m)

Description:

rRim2

Value: if rRim < 0 then 0 else if rRim > ri + h then ri + h else rRim

Type: Radius (m)

Description:

Components (3)

world

Type: World

Description:

pipe

Type: Shape

Description:

torus

Type: Surface

Description:

Used in Examples (1)

Surfaces

Demonstrate the visualization of a sine surface, as well as a torus and a wheel constructed from a surface