Computation on Trees

The Wolfram Language enables high-level functional programming using symbolic trees. Trees can be converted between different representations, and trees can be recursively constructed and traversed.

NestTree recursively build up a tree by applying a function to the leaves

TreeFold recursively reduce a tree to a single value

TreeMap traverse a tree, applying a function to each subtree

TreeScan traverse a tree, applying a function to each subtree, discarding the result

TreeTraversalOrder specify the order to visit nodes in a tree

Operations on Subtrees

TreeInsert insert subtrees at the specified positions

TreeDelete delete subtrees at the specified positions

TreeReplacePart replace subtrees at the specified positions

TreeMapAt apply a function at the specified positions

Pattern Matching on Trees

TreeCases list of subtrees matching a pattern

TreePosition positions of subtrees matching a pattern

TreeCount number of subtrees matching a pattern

Conversion Functions

TreeRules convert a tree to nested rules

TreeExpression convert a tree to an expression

TreeGraph convert a tree to a graph

RulesTree  ▪  ExpressionTree  ▪  GraphTree  ▪  ...

Properties and Measurements »

TreeExtract extract subtrees at the specified positions

TreeCases  ▪  TreePosition  ▪  TreeSize  ▪  TreeDepth  ▪  TreeLeaves  ▪  ...