AcousticPDEComponentCopy to clipboard.
✖
AcousticPDEComponent
yields an acoustic PDE term component with variables vars and parameters pars.
Details




- AcousticPDEComponent returns a sum of differential operators to be used as a part of partial differential equations:
- AcousticPDEComponent models the propagation of sound in isotropic media in both the time and frequency domain by mechanisms such as diffusion.
- AcousticPDEComponent models acoustic phenomena in fluids with dependent variable pressure
[
], independent variables
[
] and time variable
[
] or frequency variable
[
].
- Time-dependent variables vars are vars={p[t,x1,…,xn],t,{x1,…,xn}}.
- Frequency-dependent variables vars are vars={p[x1,…,xn],ω,{x1,…,xn}}.
- The time domain acoustics model AcousticPDEComponent is based on a wave equation with time variable
, density
, sound speed
and sound sources
and
:
- The frequency domain acoustics model AcousticPDEComponent is based on a Helmholtz equation with angular frequency
:
- The units of the acoustic PDE terms are in units of [1/
].
- The following parameters pars can be given:
-
parameter default symbol "DipoleSource" {0,…} , dipole source [
]
"MassDensity" 1 , density of media [
]
"Material" Automatic "MonopoleSource" 0 , monopole source [1/
]
"RegionSymmetry" None "SoundSpeed" 1 , speed of sound [
]
- All parameters may depend on any of
,
and
as well as other dependent variables with the exception of
, resulting in a nonlinear eigenvalue problem.
- AcousticPDEComponent allows for sources in the time domain and sources in the frequency domain.
-
Monopole source, Copy to clipboard.✖https://wolfram.com/xid/0d2p3il2o6flb01aecoci6
Direct link to exampleDipole source, Copy to clipboard.✖https://wolfram.com/xid/0d2p3il2o6flb01aecoci6
Direct link to example - A monopole source
models a point source that radiates sound isotropically.
- A dipole source
models a two-point source that radiates sound anisotropically.
- The number of independent variables in
specifies the length of
.
- If no parameters are specified, the default time domain acoustics PDE is
- If no parameters are specified, the default frequency domain acoustics PDE is
- A possible choice for the parameter "RegionSymmetry" is "Axisymmetric".
- "Axisymmetric" region symmetry represents a truncated cylindrical coordinate system where the cylindrical coordinates are reduced by removing the angle variable as follows:
-
dimension reduction equation 1D 2D - If the AcousticPDEComponent depends on parameters
that are specified in the association pars as …,keypi…,pivi,…], the parameters
are replaced with
.






Examples
open allclose allBasic Examples (4)Summary of the most common use cases
Define a time domain acoustic PDE term:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-nx7oa9

Define a frequency domain acoustic model:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-o37aj0

Define model variables vars for a transient acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-ff3bvs
Define initial conditions ics of a right-going sound wave :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-hwck5b
Set up the equation with a sound hard boundary at the right end:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-qfm3d2


https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-lts889
Visualize the sound field in the time domain:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-6z9t8h

Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-6xqbpo
Set up the equation with a radiation boundary at the left end:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-odt7ku

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-xht1ym
Visualize the sound field in the frequency domain at various frequencies :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-6luhf0

Scope (21)Survey of the scope of standard use cases
Basic Examples (2)
Define a time- or frequency-independent acoustic model:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-q7jiop

Define a time- or frequency-independent acoustic axisymmetric model:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-05k6pi

Time Domain (7)
Define model variables vars for a transient acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-dkqzor
Set up initial conditions ics of a right-going plane wave :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-782st2
Set up the equation with an acoustic absorbing boundary at the right end for a plane wave:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-42zqls

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-mbx188

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-4vstdx

Define model variables vars for a transient acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-rg5ljl
Define initial conditions ics of a right-going plane wave :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-8oh64a
Set up the equation with an acoustic impedance boundary at the right and an impedance of
:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-zve6oh

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-6qylfk

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-n1vngk

Define model variables vars for a transient acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-jndtki
Define silent initial conditions ics:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-zz8xlz
Set up the equation with an acoustic normal velocity boundary with the sound particle velocity v of at the left end:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-n25z2k
Solve the PDE on a refined mesh:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-hpjmye

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-hb4etn

Define model variables vars for a transient acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-xntwvy
Define silent initial conditions ics:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-zsqfna
Set up the equation with an acoustic pressure boundary and a pressure source of
at the left end:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-4dhl1v
Solve the PDE on a refined mesh:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-p4fwvs

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-tm2q28

Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-njshna
Define silent initial conditions ics:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-2uykky
Set up the equation with an acoustic radiation boundary at the left end, a pressure source of
and a radiation angle
of
:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-ybech5

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-bb27yc

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-d15too

Define model variables vars for a transient acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-sc8r2x
Define initial conditions ics of a right-going plane wave :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-uxipj8
Set up the equation with an acoustic sound hard boundary at the right end:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-zs2ic4

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-4rbcfo

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-0dsfh7

Define model variables vars for a transient acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-uu6toz
Define initial conditions of a right-going plane wave
:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-6dfymd
Set up the equation with an acoustic sound soft boundary at the right end:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-zhia5e

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-5r1ftn

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-8g08wi

Frequency Domain (10)
Define a frequency domain acoustic model with particular sound speed and mass density:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-19xw8a

Define a frequency domain acoustic model for a particular material:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-479m0m

Define a frequency domain acoustic model for a particular material:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-450lar

Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-dcdeb2
Set up the equation with a radiation boundary at the left end and an acoustic absorbing boundary at the right end:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-tgzhoh


https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-h20j7w
Visualize the solution in the frequency domain at various frequencies :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-kz3jqn

Convert the solution to the time domain:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-vrfb1r

Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-bhl0xg
Set up the equation with a radiation boundary at the left, an acoustic impedance boundary at the right and an impedance of
:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-jxvm1d

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-1tr8dy
Visualize the solution in the frequency domain at various frequencies :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-hfw83g

Convert the solution to the time domain:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-gw1pid

Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-friucl
Set up the equation with an acoustic normal velocity boundary at the left, the sound particle velocity of
and an acoustic absorbing boundary at the right:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-nxequa

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-j45tbr
Visualize the solution in the frequency domain at various frequencies :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-twzwts

Convert the solution to the time domain:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-f4fyi3

Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-wx4z87
Set up the equation with an acoustic pressure boundary at the left, a pressure source of
and an acoustic absorbing boundary at the right:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-p4wfaa

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-ohxk8y
Visualize the solution in the frequency domain at various frequencies :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-6895m5

Convert the solution to the time domain:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-jrdfzk

Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-exrmgh
Set up the equation with an acoustic radiation boundary at the left end, a pressure source of
and a radiation angle
of
:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-gkaaae

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-pwe1cl
Visualize the solution in the frequency domain at various frequencies :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-dy5y5f

Convert the solution to the time domain:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-xj6h47

Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-lkca8y
Set up the equation with an acoustic radiation boundary at the left, a pressure source of
and an acoustic sound hard boundary at the right:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-37me12

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-h50g13
Visualize the solution in the frequency domain at various frequencies :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-cjxae2

Convert the solution to the time domain:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-imjpc3

Define model variables vars for a frequency domain acoustic pressure field with model parameters pars:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-qdqm9v
Set up the equation with a radiation boundary at the left end and an acoustic absorbing boundary at the right end:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-r4iroh

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-dok3s9
Visualize the solution in the frequency domain at various frequencies :

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-4qix3

Convert the solution to the time domain:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-xn64v6

Units (2)
Set up an acoustic time domain equation for xenon:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-wft4av

Set up an acoustic frequency domain model for xenon by specifying material parameters:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-yu3azj

Applications (1)Sample problems that can be solved with this function
The following acoustic model describes an open pipe, wherein a vibrating piston is placed inside one end of the pipe while the other end of the pipe opens into an infinite domain. In this case, an impedance boundary condition is placed on one end to model the infinite domain. The pipe that will be modeled is a flanged circular pipe, as shown in the following figure:

Since the geometry of the pipe and the boundary conditions are rotationally symmetric about the axis, an axisymmetric model can be used. The governing equation for describing the sound wave propagation is the axisymmetric Helmholtz equation.
Set up the variables and parameters:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-j381qi
The axisymmetric geometry can be approximated by a 2D rectangle, which represents a cross-section of the pipe in the plane:

Set up the rectangle region with as the radius of the tube and
as the length of the tube:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-eilxud
In the model, there are two boundary conditions. One is a NeumannValue, which expresses the acceleration of the piston with
:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-fyxwc6
The second boundary condition is an AcousticImpedanceValue with impedance . The impedance
is given by the following approximation, where
is the wavenumber:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-cbmz7h

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-d8gb18
Solve the PDE with with a MaxCellMeasure defined by
and with a resolution of 12 to get an accurate result:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-hvsgb
Visualize the pressure distribution in the full 3D region:

https://wolfram.com/xid/0d2p3il2o6flb01aecoci6-oljmh8

Wolfram Research (2020), AcousticPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/AcousticPDEComponent.html (updated 2023).
Text
Wolfram Research (2020), AcousticPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/AcousticPDEComponent.html (updated 2023).
Wolfram Research (2020), AcousticPDEComponent, Wolfram Language function, https://reference.wolfram.com/language/ref/AcousticPDEComponent.html (updated 2023).
CMS
Wolfram Language. 2020. "AcousticPDEComponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/AcousticPDEComponent.html.
Wolfram Language. 2020. "AcousticPDEComponent." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2023. https://reference.wolfram.com/language/ref/AcousticPDEComponent.html.
APA
Wolfram Language. (2020). AcousticPDEComponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AcousticPDEComponent.html
Wolfram Language. (2020). AcousticPDEComponent. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/AcousticPDEComponent.html
BibTeX
@misc{reference.wolfram_2025_acousticpdecomponent, author="Wolfram Research", title="{AcousticPDEComponent}", year="2023", howpublished="\url{https://reference.wolfram.com/language/ref/AcousticPDEComponent.html}", note=[Accessed: 26-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_acousticpdecomponent, organization={Wolfram Research}, title={AcousticPDEComponent}, year={2023}, url={https://reference.wolfram.com/language/ref/AcousticPDEComponent.html}, note=[Accessed: 26-March-2025
]}