BesselJZero
✖
BesselJZero
Details

- Mathematical function, suitable for both symbolic and numerical manipulation.
- N[BesselJZero[n,k]] gives a numerical approximation so long as the specified zero exists.
- BesselJZero[n,k] represents the k
zero greater than 0.
- BesselJZero can be evaluated to arbitrary numerical precision.
- BesselJZero automatically threads over lists. »
Examples
open allclose allBasic Examples (5)Summary of the most common use cases

https://wolfram.com/xid/0mlgadgcsomw-mng3w


https://wolfram.com/xid/0mlgadgcsomw-clelng

Display zeros of the BesselJ function over a subset of the reals:

https://wolfram.com/xid/0mlgadgcsomw-b44iq5

Series expansion at the origin:

https://wolfram.com/xid/0mlgadgcsomw-qhqqh

TraditionalForm formatting:

https://wolfram.com/xid/0mlgadgcsomw-fm3bjb

Scope (18)Survey of the scope of standard use cases
Numerical Evaluation (7)

https://wolfram.com/xid/0mlgadgcsomw-l274ju

Find the first zero of greater than 40:

https://wolfram.com/xid/0mlgadgcsomw-gvjp4u


https://wolfram.com/xid/0mlgadgcsomw-b0wt9

Evaluate efficiently at high precision:

https://wolfram.com/xid/0mlgadgcsomw-di5gcr


https://wolfram.com/xid/0mlgadgcsomw-bq2c6r

Evaluate at a non-integer second argument:

https://wolfram.com/xid/0mlgadgcsomw-fegr0a

For BesselJZero[ν,k-α/π], the result is a zero of :

https://wolfram.com/xid/0mlgadgcsomw-jyn2na

Compute average-case statistical intervals using Around:

https://wolfram.com/xid/0mlgadgcsomw-cw18bq

Compute the elementwise values of an array using automatic threading:

https://wolfram.com/xid/0mlgadgcsomw-thgd2

Or compute the matrix BesselJZero function using MatrixFunction:

https://wolfram.com/xid/0mlgadgcsomw-o5jpo

Specific Values (3)

https://wolfram.com/xid/0mlgadgcsomw-ciezym


https://wolfram.com/xid/0mlgadgcsomw-e3n9bq

Find the first zero of BesselJ[1,x] using Solve:

https://wolfram.com/xid/0mlgadgcsomw-f2hrld


https://wolfram.com/xid/0mlgadgcsomw-bk6w11

Visualization (3)
Visualize the zeroes of BesselJ as a step function:

https://wolfram.com/xid/0mlgadgcsomw-g7ixf5

Display zeros of the BesselJ function:

https://wolfram.com/xid/0mlgadgcsomw-ecj8m7

Show the first zero greater than 6:

https://wolfram.com/xid/0mlgadgcsomw-df2nos

Differentiation and Series Expansions (5)
Find the derivative of Bessel zero with respect to k:

https://wolfram.com/xid/0mlgadgcsomw-oz5ac4


https://wolfram.com/xid/0mlgadgcsomw-nfbe0l

Find the Taylor expansion using Series:

https://wolfram.com/xid/0mlgadgcsomw-ewr1h8

Find the series expansion at Infinity:

https://wolfram.com/xid/0mlgadgcsomw-syq

Taylor expansion at a generic point:

https://wolfram.com/xid/0mlgadgcsomw-jwxla7

Applications (3)Sample problems that can be solved with this function
Find the first 10 eigenmodes of a circular drum with Dirichlet boundary conditions:

https://wolfram.com/xid/0mlgadgcsomw-jjf5xo

Construct an amplitude comprising a certain mixture of modes:

https://wolfram.com/xid/0mlgadgcsomw-c8ko17

https://wolfram.com/xid/0mlgadgcsomw-cfo6eq

Radial drum displacement profile:

https://wolfram.com/xid/0mlgadgcsomw-6w1r1

Find the coefficient in the Rayleigh criterion for diffraction-limited optics:

https://wolfram.com/xid/0mlgadgcsomw-gfbw2h

Analytically compute the eigenvalues of a Laplacian in Cartesian coordinates over a Disk:

https://wolfram.com/xid/0mlgadgcsomw-ukyzsi

Properties & Relations (1)Properties of the function, and connections to other functions
Asymptotic behavior of BesselJZero[ν,k] for large k:

https://wolfram.com/xid/0mlgadgcsomw-bgfojp

Wolfram Research (2007), BesselJZero, Wolfram Language function, https://reference.wolfram.com/language/ref/BesselJZero.html.
Text
Wolfram Research (2007), BesselJZero, Wolfram Language function, https://reference.wolfram.com/language/ref/BesselJZero.html.
Wolfram Research (2007), BesselJZero, Wolfram Language function, https://reference.wolfram.com/language/ref/BesselJZero.html.
CMS
Wolfram Language. 2007. "BesselJZero." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BesselJZero.html.
Wolfram Language. 2007. "BesselJZero." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BesselJZero.html.
APA
Wolfram Language. (2007). BesselJZero. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BesselJZero.html
Wolfram Language. (2007). BesselJZero. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BesselJZero.html
BibTeX
@misc{reference.wolfram_2025_besseljzero, author="Wolfram Research", title="{BesselJZero}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/BesselJZero.html}", note=[Accessed: 18-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_besseljzero, organization={Wolfram Research}, title={BesselJZero}, year={2007}, url={https://reference.wolfram.com/language/ref/BesselJZero.html}, note=[Accessed: 18-April-2025
]}