WOLFRAM

represents the k^(th) zero of the Bessel function .

BesselJZero[n,k,x0]

represents the k^(th) zero greater than x0.

Details

  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • N[BesselJZero[n,k]] gives a numerical approximation so long as the specified zero exists.
  • BesselJZero[n,k] represents the k^(th) zero greater than 0.
  • BesselJZero can be evaluated to arbitrary numerical precision.
  • BesselJZero automatically threads over lists. »

Examples

open allclose all

Basic Examples  (5)Summary of the most common use cases

Evaluate numerically:

Out[1]=1

Evaluate symbolically:

Out[1]=1

Display zeros of the BesselJ function over a subset of the reals:

Out[1]=1

Series expansion at the origin:

Out[1]=1

TraditionalForm formatting:

Scope  (18)Survey of the scope of standard use cases

Numerical Evaluation  (7)

Evaluate numerically:

Out[3]=3

Find the first zero of greater than 40:

Out[1]=1

Evaluate to high precision:

Out[1]=1

Evaluate efficiently at high precision:

Out[1]=1
Out[2]=2

Evaluate at a non-integer second argument:

Out[1]=1

For BesselJZero[ν,k-α/π], the result is a zero of :

Out[2]=2

Compute average-case statistical intervals using Around:

Out[1]=1

Compute the elementwise values of an array using automatic threading:

Out[1]=1

Or compute the matrix BesselJZero function using MatrixFunction:

Out[2]=2

Specific Values  (3)

Limiting value at infinity:

Out[1]=1

The first three zeros:

Out[1]=1

Find the first zero of BesselJ[1,x] using Solve:

Out[1]=1
Out[2]=2

Visualization  (3)

Visualize the zeroes of BesselJ as a step function:

Out[19]=19

Display zeros of the BesselJ function:

Out[1]=1

Show the first zero greater than 6:

Out[1]=1

Differentiation and Series Expansions  (5)

Find the derivative of Bessel zero with respect to k:

Out[1]=1

Second derivative:

Out[1]=1

Find the Taylor expansion using Series:

Out[1]=1

Find the series expansion at Infinity:

Out[1]=1

Taylor expansion at a generic point:

Out[1]=1

Applications  (3)Sample problems that can be solved with this function

Find the first 10 eigenmodes of a circular drum with Dirichlet boundary conditions:

Out[1]=1

Construct an amplitude comprising a certain mixture of modes:

Circular density plot:

Out[3]=3

Radial drum displacement profile:

Out[4]=4

Find the coefficient in the Rayleigh criterion for diffraction-limited optics:

Out[1]=1

Analytically compute the eigenvalues of a Laplacian in Cartesian coordinates over a Disk:

Out[1]=1

Properties & Relations  (1)Properties of the function, and connections to other functions

Asymptotic behavior of BesselJZero[ν,k] for large k:

Out[1]=1
Wolfram Research (2007), BesselJZero, Wolfram Language function, https://reference.wolfram.com/language/ref/BesselJZero.html.
Wolfram Research (2007), BesselJZero, Wolfram Language function, https://reference.wolfram.com/language/ref/BesselJZero.html.

Text

Wolfram Research (2007), BesselJZero, Wolfram Language function, https://reference.wolfram.com/language/ref/BesselJZero.html.

Wolfram Research (2007), BesselJZero, Wolfram Language function, https://reference.wolfram.com/language/ref/BesselJZero.html.

CMS

Wolfram Language. 2007. "BesselJZero." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BesselJZero.html.

Wolfram Language. 2007. "BesselJZero." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/BesselJZero.html.

APA

Wolfram Language. (2007). BesselJZero. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BesselJZero.html

Wolfram Language. (2007). BesselJZero. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/BesselJZero.html

BibTeX

@misc{reference.wolfram_2025_besseljzero, author="Wolfram Research", title="{BesselJZero}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/BesselJZero.html}", note=[Accessed: 18-April-2025 ]}

@misc{reference.wolfram_2025_besseljzero, author="Wolfram Research", title="{BesselJZero}", year="2007", howpublished="\url{https://reference.wolfram.com/language/ref/BesselJZero.html}", note=[Accessed: 18-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_besseljzero, organization={Wolfram Research}, title={BesselJZero}, year={2007}, url={https://reference.wolfram.com/language/ref/BesselJZero.html}, note=[Accessed: 18-April-2025 ]}

@online{reference.wolfram_2025_besseljzero, organization={Wolfram Research}, title={BesselJZero}, year={2007}, url={https://reference.wolfram.com/language/ref/BesselJZero.html}, note=[Accessed: 18-April-2025 ]}