ContinuedFractionK

ContinuedFractionK[f,g,{i,imin,imax}]

連分数 を表す.

ContinuedFractionK[g,{i,imin,imax}]

連分数 を表す.

詳細とオプション

例題

すべて開くすべて閉じる

  (2)

簡単な連分数:

連分数の 次収束:

オプション  (1)

GenerateConditions  (1)

連分数が収束するために必要な条件を求める:

特性と関係  (2)

連分数は,二次の漸化式と解の比として構築することができる:

連分数は,線形独立の2つの解の比である:

ContinuedFractionKおよびFromContinuedFractionは,互いに逆の関係にある:

考えられる問題  (1)

連分数は収束しないことがある:

おもしろい例題  (1)

連分数の表を作る:

Wolfram Research (2008), ContinuedFractionK, Wolfram言語関数, https://reference.wolfram.com/language/ref/ContinuedFractionK.html.

テキスト

Wolfram Research (2008), ContinuedFractionK, Wolfram言語関数, https://reference.wolfram.com/language/ref/ContinuedFractionK.html.

CMS

Wolfram Language. 2008. "ContinuedFractionK." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/ContinuedFractionK.html.

APA

Wolfram Language. (2008). ContinuedFractionK. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/ContinuedFractionK.html

BibTeX

@misc{reference.wolfram_2024_continuedfractionk, author="Wolfram Research", title="{ContinuedFractionK}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/ContinuedFractionK.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_continuedfractionk, organization={Wolfram Research}, title={ContinuedFractionK}, year={2008}, url={https://reference.wolfram.com/language/ref/ContinuedFractionK.html}, note=[Accessed: 21-November-2024 ]}