ContinuedFractionK

ContinuedFractionK[f,g,{i,imin,imax}]

表示连分数 .

ContinuedFractionK[g,{i,imin,imax}]

表示连分数 .

更多信息和选项

范例

打开所有单元关闭所有单元

基本范例  (2)

一个简单的连分数:

连分数的第 收敛:

选项  (1)

GenerateConditions  (1)

生成连分数收敛的条件:

属性和关系  (2)

连分数可以用解与二阶递归方程的比值来得到:

连分数是两个线性无关的解的比值:

ContinuedFractionKFromContinuedFraction 互为倒数:

可能存在的问题  (1)

连分数可能不收敛:

巧妙范例  (1)

创建一组连分数:

Wolfram Research (2008),ContinuedFractionK,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ContinuedFractionK.html.

文本

Wolfram Research (2008),ContinuedFractionK,Wolfram 语言函数,https://reference.wolfram.com/language/ref/ContinuedFractionK.html.

CMS

Wolfram 语言. 2008. "ContinuedFractionK." Wolfram 语言与系统参考资料中心. Wolfram Research. https://reference.wolfram.com/language/ref/ContinuedFractionK.html.

APA

Wolfram 语言. (2008). ContinuedFractionK. Wolfram 语言与系统参考资料中心. 追溯自 https://reference.wolfram.com/language/ref/ContinuedFractionK.html 年

BibTeX

@misc{reference.wolfram_2024_continuedfractionk, author="Wolfram Research", title="{ContinuedFractionK}", year="2008", howpublished="\url{https://reference.wolfram.com/language/ref/ContinuedFractionK.html}", note=[Accessed: 21-November-2024 ]}

BibLaTeX

@online{reference.wolfram_2024_continuedfractionk, organization={Wolfram Research}, title={ContinuedFractionK}, year={2008}, url={https://reference.wolfram.com/language/ref/ContinuedFractionK.html}, note=[Accessed: 21-November-2024 ]}