WOLFRAM

represents a CoxIngersollRoss process with longterm mean μ, volatility σ, speed of adjustment θ, and initial condition x0.

Details

Examples

open allclose all

Basic Examples  (3)Summary of the most common use cases

Simulate a CoxIngersollRoss process:

Out[1]=1
Out[2]=2

Mean and variance functions:

Out[1]=1
Out[2]=2

Covariance function:

Out[1]=1
Out[2]=2

Scope  (14)Survey of the scope of standard use cases

Basic Uses  (9)

Simulate an ensemble of random paths for a CoxIngersollRoss process:

Out[1]=1
Out[2]=2

Simulate with arbitrary precision:

Out[1]=1

Compare paths for different values of the drift parameter:

Out[2]=2

Compare paths for different values of the volatility parameter:

Out[2]=2

Compare paths for different values of the speed adjustment parameter:

Out[2]=2

Simulate a CoxIngersollRoss process with different starting points:

Out[3]=3

Process parameter estimation:

Out[2]=2

Correlation function:

Out[1]=1

Absolute correlation function:

Out[1]=1

Process Slice Properties  (5)

First-order probability density function for the slice distribution:

Out[3]=3
Out[15]=15

Multivariate slice distributions:

Out[1]=1
Out[2]=2

Compute the expectation of an expression:

Out[1]=1

Calculate the probability of an event:

Out[2]=2

Skewness and kurtosis:

Out[1]=1
Out[2]=2

Moment of order r:

Out[1]=1

Generating functions:

Out[2]=2
Out[3]=3

CentralMoment and its generating function:

Out[4]=4
Out[5]=5

FactorialMoment and its generating function:

Out[6]=6
Out[7]=7

Cumulant and its generating function:

Out[8]=8
Out[9]=9

Properties & Relations  (3)Properties of the function, and connections to other functions

A CoxingersollRoss process is not weakly stationary:

Out[1]=1

Conditional cumulative distribution function:

Out[1]=1

A CoxingersollRoss process is a special ItoProcess:

Out[1]=1

As well as StratonovichProcess:

Out[2]=2

Neat Examples  (3)Surprising or curious use cases

Simulate a CoxIngersollRoss process in two dimensions:

Out[2]=2

Simulate a CoxIngersollRoss process in three dimensions:

Out[2]=2

Simulate 500 paths from a CoxIngersollRoss process:

Take a slice at 1 and visualize its distribution:

Plot paths and histogram distribution of the slice distribution at 1:

Out[4]=4
Wolfram Research (2012), CoxIngersollRossProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html.
Wolfram Research (2012), CoxIngersollRossProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html.

Text

Wolfram Research (2012), CoxIngersollRossProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html.

Wolfram Research (2012), CoxIngersollRossProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html.

CMS

Wolfram Language. 2012. "CoxIngersollRossProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html.

Wolfram Language. 2012. "CoxIngersollRossProcess." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html.

APA

Wolfram Language. (2012). CoxIngersollRossProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html

Wolfram Language. (2012). CoxIngersollRossProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html

BibTeX

@misc{reference.wolfram_2025_coxingersollrossprocess, author="Wolfram Research", title="{CoxIngersollRossProcess}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html}", note=[Accessed: 28-April-2025 ]}

@misc{reference.wolfram_2025_coxingersollrossprocess, author="Wolfram Research", title="{CoxIngersollRossProcess}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html}", note=[Accessed: 28-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_coxingersollrossprocess, organization={Wolfram Research}, title={CoxIngersollRossProcess}, year={2012}, url={https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html}, note=[Accessed: 28-April-2025 ]}

@online{reference.wolfram_2025_coxingersollrossprocess, organization={Wolfram Research}, title={CoxIngersollRossProcess}, year={2012}, url={https://reference.wolfram.com/language/ref/CoxIngersollRossProcess.html}, note=[Accessed: 28-April-2025 ]}