GeometricBrownianMotionProcess
✖
GeometricBrownianMotionProcess
represents a geometric Brownian motion process with drift μ, volatility σ, and initial value x0.
Details

- GeometricBrownianMotionProcess is also known as exponential Brownian motion and Rendleman–Bartter model.
- In mathematical finance, GeometricBrownianMotionProcess is used in Black–Scholes model for stock price modeling.
- GeometricBrownianMotionProcess is a continuous-time and continuous-state random process.
- The state
of a geometric Brownian motion satisfies an Ito differential equation
, where
follows a standard WienerProcess[].
- The state
follows LogNormalDistribution[(μ-
) t+Log[x0],σ
].
- The parameter μ can be any real number, and σ and x0 any positive real numbers.
- GeometricBrownianMotionProcess can be used with such functions as Mean, PDF, Probability, and RandomFunction.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Simulate a geometric Brownian motion process:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-d1w4w3


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-2cv7lb


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-h7sccn


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-p4sqxp


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-ckcrvm


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-wgmtgx

Scope (13)Survey of the scope of standard use cases
Basic Uses (8)
Simulate an ensemble of paths:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-fpxoi1


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-oqxhn9

Simulate with arbitrary precision:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-big92j

Compare paths for different values of the drift parameter:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-2vtftp

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-1hrt14

Compare paths for different values of the volatility parameter:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-go5d2j

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-1t61wr

Simulate a geometric Brownian motion with different starting points:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-0pbe4h

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-37l3wb

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-sl7ej3


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-b4q52

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-e93vf3


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-gs88g1

Absolute correlation function:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-1y2afr

Process Slice Properties (5)
Univariate time slice follows a LogNormalDistribution:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-iuh4hp

First-order probability density function:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-1ou3ti


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-19dhvn

Multi-time slice follows a LogMultinormalDistribution:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-m0rwoh


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-qdgkbp

Compute the expectation of an expression:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-edmw6r

Calculate the probability of an event:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-miucta


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-xgr42o


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-bmnu2m


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-84cmmy

CentralMoment has no closed form for symbolic order:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-eawm2x

FactorialMoment has no closed form for symbolic order:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-o10xs2

Cumulant has no closed form for symbolic order:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-fmfg53

Generalizations & Extensions (1)Generalized and extended use cases
Define a transformed GeometricBrownianMotionProcess:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-dpyj6l

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-bc670

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-wjjis


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-itzp8c


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-fqg18c

Applications (2)Sample problems that can be solved with this function

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-5lz7tf


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-esnm56


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-0yex7h

Fit a geometric Brownian process to the values:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-ot0o4y

Simulate future paths for the next half-year:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-yidrji

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-1uy8ty


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-7ymhs

Calculate the mean function of the simulations to find predicted future values:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-s9vd1z

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-tufahb

Find the trend for index SP500:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-8x63b7


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-y4glca


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-x37dze

Simulate future paths for the next 100 business days:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-enmj5r

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-ko7hkh


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-0kprru

Calculate the mean function of the simulations to find predicted future values:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-otoyrq

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-mpekny

Properties & Relations (6)Properties of the function, and connections to other functions
GeometricBrownianMotionProcess is not weakly stationary:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-krsxqw

Geometric Brownian motion process does not have independent increments:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-4qm7tz

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-c8sa4l

Compare to the product of expectations:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-oz53le


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-gyuvmt

Conditional cumulative probability distribution:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-ih0g5c

A geometric Brownian motion process is a special ItoProcess:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-ewmdo

As well as StratonovichProcess:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-fx97pi

Geometric Brownian motion is a solution to the stochastic differential equation :

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-ek8mx8

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-wv0y4

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-h8873w

Compare with the corresponding smooth solution:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-bw6r6p


https://wolfram.com/xid/0vvexylhokp9zu0u4i6-hym4j8

Use WienerProcess directly to simulate GeometricBrownianMotionProcess:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-uis1qj

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-4dew5q
Apply a transformation to the random sample:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-8kr7zd
It agrees with the algorithm for simulating corresponding GeometricBrownianMotionProcess:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-mklly2

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-mwwpbw

Neat Examples (3)Surprising or curious use cases
Simulate a geometric Brownian motion process in two dimensions:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-pwk6zq

Simulate a geometric Brownian motion process in three dimensions:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-ceyk91

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-kojc8

Simulate paths from a geometric Brownian motion process:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-q7hoj9
Take a slice at 1 and visualize its distribution:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-8s9gfo

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-nbi1ug
Plot paths and histogram distribution of the slice distribution at 1:

https://wolfram.com/xid/0vvexylhokp9zu0u4i6-kwifgz

Wolfram Research (2012), GeometricBrownianMotionProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/GeometricBrownianMotionProcess.html (updated 2017).
Text
Wolfram Research (2012), GeometricBrownianMotionProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/GeometricBrownianMotionProcess.html (updated 2017).
Wolfram Research (2012), GeometricBrownianMotionProcess, Wolfram Language function, https://reference.wolfram.com/language/ref/GeometricBrownianMotionProcess.html (updated 2017).
CMS
Wolfram Language. 2012. "GeometricBrownianMotionProcess." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/GeometricBrownianMotionProcess.html.
Wolfram Language. 2012. "GeometricBrownianMotionProcess." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/GeometricBrownianMotionProcess.html.
APA
Wolfram Language. (2012). GeometricBrownianMotionProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeometricBrownianMotionProcess.html
Wolfram Language. (2012). GeometricBrownianMotionProcess. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GeometricBrownianMotionProcess.html
BibTeX
@misc{reference.wolfram_2025_geometricbrownianmotionprocess, author="Wolfram Research", title="{GeometricBrownianMotionProcess}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/GeometricBrownianMotionProcess.html}", note=[Accessed: 26-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_geometricbrownianmotionprocess, organization={Wolfram Research}, title={GeometricBrownianMotionProcess}, year={2017}, url={https://reference.wolfram.com/language/ref/GeometricBrownianMotionProcess.html}, note=[Accessed: 26-March-2025
]}