CoxModel

CoxModel[]

represents the symbolic proportional hazards model obtained from CoxModelFit.

Details and Options

  • Properties of a Cox model are obtained from CoxModel[]["property"].
  • CoxModel[][{prop1,prop2,}] gives several properties.
  • CoxModel[][x0][t] gives the value of the best-fit function at a particular point t for covariate levels x0.
  • Normal gives the expression for the baseline survival function in a CoxModel.
  • CoxModel[][prop,ann] gives the annotation ann associated with the property prop.
  • Possible properties available for a given type of fitted model are listed on the pages for functions such as CoxModelFit that generate the model.

Examples

open allclose all

Basic Examples  (1)

Create a CoxModel from some right-censored data:

Extract a property from the model:

Evaluate the baseline survival function at 3:

Use normal to obtain the baseline survival function:

Obtain a list of available properties:

Scope  (5)

Extract a property from a CoxModel object:

The standard errors for the baseline survival function:

Obtain a list of properties:

Evaluate the baseline survival function at a point:

Map over several points:

Obtain an expression for the baseline survival function:

Annotate a property:

Wolfram Research (2012), CoxModel, Wolfram Language function, https://reference.wolfram.com/language/ref/CoxModel.html.

Text

Wolfram Research (2012), CoxModel, Wolfram Language function, https://reference.wolfram.com/language/ref/CoxModel.html.

CMS

Wolfram Language. 2012. "CoxModel." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/CoxModel.html.

APA

Wolfram Language. (2012). CoxModel. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/CoxModel.html

BibTeX

@misc{reference.wolfram_2024_coxmodel, author="Wolfram Research", title="{CoxModel}", year="2012", howpublished="\url{https://reference.wolfram.com/language/ref/CoxModel.html}", note=[Accessed: 20-January-2025 ]}

BibLaTeX

@online{reference.wolfram_2024_coxmodel, organization={Wolfram Research}, title={CoxModel}, year={2012}, url={https://reference.wolfram.com/language/ref/CoxModel.html}, note=[Accessed: 20-January-2025 ]}