FindSubgraphIsomorphism

FindSubgraphIsomorphism[g1,g2]

finds a subgraph isomorphism that maps the graph g1 to a subgraph of g2 by renaming vertices.

FindSubgraphIsomorphism[g1,g2,n]

finds at most n subgraph isomorphisms.

Details

Examples

open allclose all

Basic Examples  (2)

Find a subgraph isomorphism that maps the graph to a subgraph:

Find all subgraph isomorphisms:

Scope  (7)

Specification  (4)

FindSubgraphIsomorphism works with undirected graphs:

Directed graphs:

Edge tagged graphs:

Weighted graphs:

Enumeration  (3)

Find a subgraph isomorphism that maps the graph to a subgraph:

Find at most two subgraph isomorphisms:

Find all subgraph isomorphisms:

Applications  (1)

Find a subgraph isomorphism of the given substructure in a chemical structure graph:

Properties & Relations  (2)

Test whether a graph and a subgraph are isomorphic using IsomorphicSubgraphQ:

Use FindIsomorphicSubgraph to find a subgraph that is isomorphic to a graph:

Wolfram Research (13), FindSubgraphIsomorphism, Wolfram Language function, https://reference.wolfram.com/language/ref/FindSubgraphIsomorphism.html.

Text

Wolfram Research (13), FindSubgraphIsomorphism, Wolfram Language function, https://reference.wolfram.com/language/ref/FindSubgraphIsomorphism.html.

CMS

Wolfram Language. 13. "FindSubgraphIsomorphism." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/FindSubgraphIsomorphism.html.

APA

Wolfram Language. (13). FindSubgraphIsomorphism. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FindSubgraphIsomorphism.html

BibTeX

@misc{reference.wolfram_2021_findsubgraphisomorphism, author="Wolfram Research", title="{FindSubgraphIsomorphism}", year="13", howpublished="\url{https://reference.wolfram.com/language/ref/FindSubgraphIsomorphism.html}", note=[Accessed: 24-January-2022 ]}

BibLaTeX

@online{reference.wolfram_2021_findsubgraphisomorphism, organization={Wolfram Research}, title={FindSubgraphIsomorphism}, year={13}, url={https://reference.wolfram.com/language/ref/FindSubgraphIsomorphism.html}, note=[Accessed: 24-January-2022 ]}