IsomorphicSubgraphQ

IsomorphicSubgraphQ[g1,g2]

yields True if the graph g1 is isomorphic to a subgraph of the graph g2.

Details

Examples

open allclose all

Basic Examples  (1)

Test whether a graph is isomorphic to a subgraph:

Find a subgraph isomorphism that maps h to a subgraph of g:

Renaming the vertices of graph h gets an equal subgraph of g:

Scope  (5)

IsomorphicSubgraphQ works with undirected graphs:

Directed graphs:

Edge-tagged graphs:

Weighted graphs:

IsomorphicSubgraphQ gives False for non-isomorphic graphs:

It also gives False for non-graph expressions:

Applications  (1)

Test whether the given graph is isomorphic to a substructure of a chemical structure graph:

Properties & Relations  (2)

Use FindSubgraphIsomorphism to find a subgraph isomorphism:

Use FindIsomorphicSubgraph to find a subgraph that is isomorphic to a graph:

Wolfram Research (2021), IsomorphicSubgraphQ, Wolfram Language function, https://reference.wolfram.com/language/ref/IsomorphicSubgraphQ.html.

Text

Wolfram Research (2021), IsomorphicSubgraphQ, Wolfram Language function, https://reference.wolfram.com/language/ref/IsomorphicSubgraphQ.html.

CMS

Wolfram Language. 2021. "IsomorphicSubgraphQ." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/IsomorphicSubgraphQ.html.

APA

Wolfram Language. (2021). IsomorphicSubgraphQ. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/IsomorphicSubgraphQ.html

BibTeX

@misc{reference.wolfram_2022_isomorphicsubgraphq, author="Wolfram Research", title="{IsomorphicSubgraphQ}", year="2021", howpublished="\url{https://reference.wolfram.com/language/ref/IsomorphicSubgraphQ.html}", note=[Accessed: 03-July-2022 ]}

BibLaTeX

@online{reference.wolfram_2022_isomorphicsubgraphq, organization={Wolfram Research}, title={IsomorphicSubgraphQ}, year={2021}, url={https://reference.wolfram.com/language/ref/IsomorphicSubgraphQ.html}, note=[Accessed: 03-July-2022 ]}