WOLFRAM

FlowPolynomial
FlowPolynomial

gives the flow polynomial of the graph g.

FlowPolynomial[{vw,},]

uses rules vw to specify the graph g.

Details

  • FlowPolynomial[g,k] gives the number of nowhere-zero k-flows of g.
  • FlowPolynomial[g] gives a pure function representation of the flow polynomial of g.

Examples

open allclose all

Basic Examples  (1)Summary of the most common use cases

The flow polynomial of a Wheel graph:

Out[1]=1

Plot the polynomial:

Out[2]=2

Scope  (6)Survey of the scope of standard use cases

FlowPolynomial works with undirected graphs:

Out[1]=1

Directed graphs:

Out[1]=1

Multigraphs:

Out[1]=1

Mixed graphs:

Out[1]=1

Use rules to specify the graph:

Out[1]=1

Evaluate at specific value:

Out[1]=1

Applications  (1)Sample problems that can be solved with this function

Flow polynomials for wheel graphs with vertices:

Out[27]=27
Out[28]=28

Circulant graphs with vertices and two jumps:

Out[17]=17
Out[18]=18

Properties & Relations  (3)Properties of the function, and connections to other functions

Use TuttePolynomial to compute FlowPolynomial:

Out[3]=3
Out[4]=4

Isomorphic graphs have the same flow polynomial:

Out[2]=2
Out[3]=3

The flow polynomial for a cycle graph is k-1:

Out[1]=1
Wolfram Research (2014), FlowPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/FlowPolynomial.html (updated 2015).
Wolfram Research (2014), FlowPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/FlowPolynomial.html (updated 2015).

Text

Wolfram Research (2014), FlowPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/FlowPolynomial.html (updated 2015).

Wolfram Research (2014), FlowPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/FlowPolynomial.html (updated 2015).

CMS

Wolfram Language. 2014. "FlowPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FlowPolynomial.html.

Wolfram Language. 2014. "FlowPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FlowPolynomial.html.

APA

Wolfram Language. (2014). FlowPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FlowPolynomial.html

Wolfram Language. (2014). FlowPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FlowPolynomial.html

BibTeX

@misc{reference.wolfram_2025_flowpolynomial, author="Wolfram Research", title="{FlowPolynomial}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FlowPolynomial.html}", note=[Accessed: 21-April-2025 ]}

@misc{reference.wolfram_2025_flowpolynomial, author="Wolfram Research", title="{FlowPolynomial}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FlowPolynomial.html}", note=[Accessed: 21-April-2025 ]}

BibLaTeX

@online{reference.wolfram_2025_flowpolynomial, organization={Wolfram Research}, title={FlowPolynomial}, year={2015}, url={https://reference.wolfram.com/language/ref/FlowPolynomial.html}, note=[Accessed: 21-April-2025 ]}

@online{reference.wolfram_2025_flowpolynomial, organization={Wolfram Research}, title={FlowPolynomial}, year={2015}, url={https://reference.wolfram.com/language/ref/FlowPolynomial.html}, note=[Accessed: 21-April-2025 ]}