FlowPolynomial
✖
FlowPolynomial
Details

- FlowPolynomial[g,k] gives the number of nowhere-zero k-flows of g.
- FlowPolynomial[g] gives a pure function representation of the flow polynomial of g.
Examples
open allclose allBasic Examples (1)Summary of the most common use cases
Scope (6)Survey of the scope of standard use cases
FlowPolynomial works with undirected graphs:

https://wolfram.com/xid/0b8cyf93yq-yt21g


https://wolfram.com/xid/0b8cyf93yq-itaq3u


https://wolfram.com/xid/0b8cyf93yq-ffb0ew


https://wolfram.com/xid/0b8cyf93yq-czvddh

Use rules to specify the graph:

https://wolfram.com/xid/0b8cyf93yq-bndh30


https://wolfram.com/xid/0b8cyf93yq-lbjtot

Applications (1)Sample problems that can be solved with this function
Flow polynomials for wheel graphs with vertices:

https://wolfram.com/xid/0b8cyf93yq-bzjsri


https://wolfram.com/xid/0b8cyf93yq-e93rrv

Circulant graphs with vertices and two jumps:

https://wolfram.com/xid/0b8cyf93yq-ihdjr4


https://wolfram.com/xid/0b8cyf93yq-mlxx65

Properties & Relations (3)Properties of the function, and connections to other functions
Use TuttePolynomial to compute FlowPolynomial:

https://wolfram.com/xid/0b8cyf93yq-e14kk3

https://wolfram.com/xid/0b8cyf93yq-h8pt5

https://wolfram.com/xid/0b8cyf93yq-l0k3mc


https://wolfram.com/xid/0b8cyf93yq-eccxor

Isomorphic graphs have the same flow polynomial:

https://wolfram.com/xid/0b8cyf93yq-iji2i

https://wolfram.com/xid/0b8cyf93yq-be3e60


https://wolfram.com/xid/0b8cyf93yq-dig49q

The flow polynomial for a cycle graph is k-1:

https://wolfram.com/xid/0b8cyf93yq-grpg65

Wolfram Research (2014), FlowPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/FlowPolynomial.html (updated 2015).
Text
Wolfram Research (2014), FlowPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/FlowPolynomial.html (updated 2015).
Wolfram Research (2014), FlowPolynomial, Wolfram Language function, https://reference.wolfram.com/language/ref/FlowPolynomial.html (updated 2015).
CMS
Wolfram Language. 2014. "FlowPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FlowPolynomial.html.
Wolfram Language. 2014. "FlowPolynomial." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2015. https://reference.wolfram.com/language/ref/FlowPolynomial.html.
APA
Wolfram Language. (2014). FlowPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FlowPolynomial.html
Wolfram Language. (2014). FlowPolynomial. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/FlowPolynomial.html
BibTeX
@misc{reference.wolfram_2025_flowpolynomial, author="Wolfram Research", title="{FlowPolynomial}", year="2015", howpublished="\url{https://reference.wolfram.com/language/ref/FlowPolynomial.html}", note=[Accessed: 21-April-2025
]}
BibLaTeX
@online{reference.wolfram_2025_flowpolynomial, organization={Wolfram Research}, title={FlowPolynomial}, year={2015}, url={https://reference.wolfram.com/language/ref/FlowPolynomial.html}, note=[Accessed: 21-April-2025
]}