GegenbauerC
GegenbauerC[n,m,x]
gives the Gegenbauer polynomial .
GegenbauerC[n,x]
gives the renormalized form .
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- Explicit polynomials are given for integer n and for any m.
- satisfies the differential equation .
- The Gegenbauer polynomials are orthogonal on the interval with weight function , corresponding to integration over a unit hypersphere.
- For certain special arguments, GegenbauerC automatically evaluates to exact values.
- GegenbauerC can be evaluated to arbitrary numerical precision.
- GegenbauerC automatically threads over lists.
- GegenbauerC[n,0,x] is always zero.
- GegenbauerC[n,m,z] has a branch cut discontinuity in the complex z plane running from to .
- GegenbauerC can be used with Interval and CenteredInterval objects. »
Examples
open allclose allBasic Examples (7)
Compute the 10 Gegenbauer polynomial:
Compute the 10 renormalized Gegenbauer polynomial:
Plot over a subset of the reals:
Plot over a subset of the complexes:
Series expansion at the origin:
Asymptotic expansion at Infinity:
Scope (44)
Numerical Evaluation (6)
The precision of the output tracks the precision of the input:
Evaluate efficiently at high precision:
Compute worst-case guaranteed intervals using Interval and CenteredInterval objects:
Or compute average-case statistical intervals using Around:
Compute the elementwise values of an array:
Or compute the matrix GegenbauerC function using MatrixFunction:
Specific Values (8)
Values of GegenbauerC at fixed points:
Simple cases give exact symbolic results:
GegenbauerC for symbolic n:
Find the first positive maximum of GegenbauerC[10,x ]:
Compute the associated GegenbauerC[7,x] polynomial:
Compute the associated GegenbauerC[1/2,x] polynomial for half-integer n:
Different GegenbauerC types give different symbolic forms:
Visualization (4)
Plot the GegenbauerC function for various orders:
Plot as real parts of two parameters vary:
Types 2 and 3 of GegenbauerC function have different branch cut structures:
Function Properties (14)
Domain of GegenbauerC of integer orders:
The range for GegenbauerC of integer orders:
The range for complex values is the whole plane:
Gegenbauer polynomial of an odd order is odd:
Gegenbauer polynomial of an even order is even:
GegenbauerC threads elementwise over lists:
GegenbauerC has the mirror property :
Gegenbauer polynomials are analytic:
However, the GegenbauerC function is generally not analytic for noninteger parameters:
is neither non-decreasing nor non-increasing:
is neither non-negative nor non-positive:
has singularities or discontinuities when is not an integer and :
has additional singularities when is noninteger:
TraditionalForm formatting:
Differentiation (3)
Integration (3)
Compute the indefinite integral using Integrate:
Series Expansions (2)
Find the Taylor expansion using Series:
Function Identities and Simplifications (4)
GegenbauerC is a special case of JacobiP:
Derivative identity of GegenbauerC:
Generalizations & Extensions (2)
Applications (3)
Eigenfunctions of the angular part of the four-dimensional Laplace operator:
Radial part of the hydrogen atom eigenfunction in momentum representation:
In an n-point Gauss–Lobatto quadrature rule, the values of the two extreme nodes are fixed, and the other n-2 nodes are computed from the roots of a certain Gegenbauer polynomial. Compute the nodes and weights of an n-point Gauss–Lobatto quadrature rule:
Use the n-point Gauss–Lobatto quadrature rule to numerically evaluate an integral:
Compare the result of the Gauss–Lobatto quadrature with the result from NIntegrate:
Properties & Relations (5)
Use FunctionExpand to expand GegenbauerC into other functions:
GegenbauerC can be represented as a DifferenceRoot:
General term in the series expansion of GegenbauerC:
The generating function for GegenbauerC:
Define an inner product on functions using Integrate:
Construct an orthonormal basis using Orthogonalize:
This inner product produces the GegenbauerC polynomials:
Text
Wolfram Research (1988), GegenbauerC, Wolfram Language function, https://reference.wolfram.com/language/ref/GegenbauerC.html (updated 2022).
CMS
Wolfram Language. 1988. "GegenbauerC." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2022. https://reference.wolfram.com/language/ref/GegenbauerC.html.
APA
Wolfram Language. (1988). GegenbauerC. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/GegenbauerC.html