HeunD
HeunD[q,α,γ,δ,ϵ,z]
gives the double-confluent Heun function.
Details
- HeunD belongs to the Heun class of functions and occurs in quantum mechanics, mathematical physics and applications.
- Mathematical function, suitable for both symbolic and numerical manipulation.
- HeunD[q,α,γ,δ,ϵ,z] satisfies the double-confluent Heun differential equation .
- The HeunD function is the power-series solution of the double-confluent Heun equation that satisfies the conditions and .
- For certain special arguments, HeunD automatically evaluates to exact values.
- HeunD can be evaluated for arbitrary complex parameters.
- HeunD can be evaluated to arbitrary numerical precision.
- HeunD automatically threads over lists.
Examples
open allclose allBasic Examples (3)
Scope (25)
Numerical Evaluation (9)
The precision of the output tracks the precision of the input:
HeunD can take one or more complex number parameters:
HeunD can take complex number arguments:
Finally, HeunD can take all complex number input:
Evaluate HeunD efficiently at high precision:
Evaluate HeunD for points on the real negative axis, bypassing irregular singular origin:
Compute the elementwise values of an array:
Or compute the matrix HeunD function using MatrixFunction:
Specific Values (2)
Visualization (5)
Differentiation (2)
The -derivative of HeunD is HeunDPrime:
Higher derivatives of HeunD are calculated using HeunDPrime:
Integration (3)
Applications (3)
Solve the double-confluent Heun differential equation using DSolve:
Solve the initial value problem for the double-confluent Heun differential equation:
Plot the solution for different values of the accessory parameter q:
Directly solve the double-confluent Heun differential equation:
Properties & Relations (3)
HeunD is analytic at the point :
Origin is a singular point of the HeunD function:
Except for this singular point, HeunD can be calculated at any finite complex :
The derivative of HeunD is HeunDPrime:
Possible Issues (1)
HeunD diverges for big arguments:
Text
Wolfram Research (2020), HeunD, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunD.html.
CMS
Wolfram Language. 2020. "HeunD." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunD.html.
APA
Wolfram Language. (2020). HeunD. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunD.html