gives the -derivative of the HeunD function.


  • Mathematical function, suitable for both symbolic and numerical manipulation.
  • HeunDPrime belongs to the Heun class of functions.
  • For certain special arguments, HeunDPrime automatically evaluates to exact values.
  • HeunDPrime can be evaluated for arbitrary complex parameters.
  • HeunDPrime can be evaluated to arbitrary numerical precision.
  • HeunDPrime automatically threads over lists.


open allclose all

Basic Examples  (3)

Evaluate numerically:

Plot HeunDPrime:

Series expansion of HeunDPrime:

Scope  (23)

Numerical Evaluation  (8)

Evaluate to high precision:

The precision of the output tracks the precision of the input:

HeunDPrime can take one or more complex number parameters:

HeunDPrime can take complex number arguments:

Finally, HeunDPrime can take all complex number input:

Evaluate HeunDPrime efficiently at high precision:

Lists and matrices:

Evaluate HeunDPrime for points on the real negative axis, bypassing irregular singular origin:

Specific Values  (2)

Value of HeunDPrime at :

Value of HeunDPrime at origin is undetermined:

Visualization  (5)

Plot the HeunDPrime function:

Plot the absolute value of the HeunDPrime function for complex parameters:

Plot HeunDPrime as a function of its second parameter :

Plot HeunDPrime as a function of and :

Plot the family of HeunDPrime functions for different accessory parameter :

Differentiation  (1)

The derivatives of HeunDPrime are calculated using the HeunD function:

Integration  (3)

Integral of HeunDPrime gives back HeunD:

Definite numerical integral of HeunDPrime:

More integrals with HeunDPrime:

Series Expansions  (4)

Taylor expansion for HeunDPrime at point :

Coefficient of the second term in the series expansion of HeunDPrime at :

Plots of the first three approximations for HeunDPrime around :

Series expansion for HeunDPrime at any ordinary complex point:

Applications  (1)

Use the HeunDPrime function to calculate the derivatives of HeunD:

Properties & Relations  (3)

HeunDPrime is analytic at the point :

Origin is a singular point of the HeunDPrime function:

Except for this singular point, HeunDPrime can be calculated at any finite complex :

HeunDPrime is the derivative of HeunD:

Possible Issues  (1)

HeunDPrime diverges for big arguments:

Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.


Wolfram Research (2020), HeunDPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunDPrime.html.


@misc{reference.wolfram_2020_heundprime, author="Wolfram Research", title="{HeunDPrime}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/HeunDPrime.html}", note=[Accessed: 02-December-2020 ]}


@online{reference.wolfram_2020_heundprime, organization={Wolfram Research}, title={HeunDPrime}, year={2020}, url={https://reference.wolfram.com/language/ref/HeunDPrime.html}, note=[Accessed: 02-December-2020 ]}


Wolfram Language. 2020. "HeunDPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunDPrime.html.


Wolfram Language. (2020). HeunDPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunDPrime.html