HeunTPrime
HeunTPrime[q,α,γ,δ,ϵ,z]
gives the -derivative of the HeunT function.
Details
- Mathematical function, suitable for both symbolic and numerical manipulation.
- HeunTPrime belongs to the Heun class of functions.
- For certain special arguments, HeunTPrime automatically evaluates to exact values.
- HeunTPrime can be evaluated for arbitrary complex parameters.
- HeunTPrime can be evaluated to arbitrary numerical precision.
- HeunTPrime automatically threads over lists.
Examples
open allclose allBasic Examples (3)
Scope (22)
Numerical Evaluation (8)
The precision of the output tracks the precision of the input:
HeunTPrime can take one or more complex number parameters:
HeunTPrime can take complex number arguments:
Finally, HeunTPrime can take all complex number input:
Evaluate HeunTPrime efficiently at high precision:
Compute the elementwise values of an array:
Or compute the matrix HeunTPrime function using MatrixFunction:
Specific Values (1)
Value of HeunTPrime at origin:
Visualization (5)
Plot the HeunTPrime function:
Plot the absolute value of the HeunTPrime function for complex parameters:
Plot HeunTPrime as a function of its second parameter :
Plot HeunTPrime as a function of and :
Plot the family of HeunTPrime functions for different values of the accessory parameter :
Differentiation (1)
The derivatives of HeunTPrime are calculated using the HeunT function:
Integration (3)
Integral of HeunTPrime gives back HeunT:
Definite numerical integral of HeunTPrime:
More integrals with HeunTPrime:
Series Expansions (4)
Taylor expansion for HeunTPrime at origin:
Coefficient of the second term in the series expansion of HeunTPrime at :
Plots of the first three approximations for HeunTPrime around :
Series expansion for HeunTPrime at any ordinary complex point:
Applications (1)
Use the HeunTPrime function to calculate the derivatives of HeunT:
Properties & Relations (4)
HeunTPrime is analytic at the origin:
HeunTPrime can be calculated at any finite complex :
HeunTPrime is the derivative of HeunT:
Use FunctionExpand to expand HeunTPrime into simpler functions:
Possible Issues (1)
HeunTPrime calculations might take time for big arguments:
Neat Examples (1)
The Schrödinger equation for the following infinite potential well can be solved in terms of HeunTPrime:
Text
Wolfram Research (2020), HeunTPrime, Wolfram Language function, https://reference.wolfram.com/language/ref/HeunTPrime.html.
CMS
Wolfram Language. 2020. "HeunTPrime." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/HeunTPrime.html.
APA
Wolfram Language. (2020). HeunTPrime. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/HeunTPrime.html