InverseWishartMatrixDistribution
✖
InverseWishartMatrixDistribution
represents an inverse Wishart matrix distribution with ν degrees of freedom and covariance matrix Σ.
Details

- The probability density for a symmetric matrix
in an inverse Wishart matrix distribution is proportional to
, where
is the size of matrix Σ.
- For a matrix
distributed as InverseWishartMatrixDistribution[ν,Σ], the inverse
is distributed as WishartMatrixDistribution[ν,Σ-1].
- The covariance matrix
can be any positive definite symmetric matrix of dimensions
and ν can be any real number greater than
.
- InverseWishartMatrixDistribution can be used with such functions as MatrixPropertyDistribution, EstimatedDistribution, and RandomVariate.
Examples
open allclose allBasic Examples (3)Summary of the most common use cases
Generate a pseudorandom matrix:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-lcf25m

Check that it is positive definite:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-436hr

Sample eigenvalues of an inverse Wishart random matrix using MatrixPropertyDistribution:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-c7w4o4

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-eq63i5


https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-sxr


https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-g5k

Scope (6)Survey of the scope of standard use cases
Generate a single pseudorandom matrix:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-d13sc9

Generate a set of pseudorandom matrices:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-y6wkjj


https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-exxjnv

Compute statistical properties numerically:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-6gedk9
Numerically approximate expectation of the largest matrix eigenvalue :

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-3m1a2c

Distribution parameters estimation:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-ndcda
Estimate the distribution parameters from sample data:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-epi747

Compare LogLikelihood for both distributions:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-2slvjw


https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-h521li

Properties & Relations (3)Properties of the function, and connections to other functions
, where
and
are independent Gaussian vector and Wishart matrix follows HotellingTSquareDistribution:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-bsax8f
Use MatrixPropertyDistribution to sample expressions :

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-ck8vqy

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-bcpdu4


https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-lidu3v

Any diagonal element of inverse Wishart random matrix follows scaled inverse χ2 distribution:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-uslpw

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-q5ery4


https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-bgvtqd

Diagonal elements are not independent:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-ipjqm3


https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-l2xbzm

For any nonzero vector and inverse Wishart matrix
with scale matrix
,
is χ2 distributed:

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-dus3vi

https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-b4tu5a


https://wolfram.com/xid/0ce0v1uwsetz3mjigjgyi-fmhnqz

Wolfram Research (2015), InverseWishartMatrixDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html (updated 2017).
Text
Wolfram Research (2015), InverseWishartMatrixDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html (updated 2017).
Wolfram Research (2015), InverseWishartMatrixDistribution, Wolfram Language function, https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html (updated 2017).
CMS
Wolfram Language. 2015. "InverseWishartMatrixDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html.
Wolfram Language. 2015. "InverseWishartMatrixDistribution." Wolfram Language & System Documentation Center. Wolfram Research. Last Modified 2017. https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html.
APA
Wolfram Language. (2015). InverseWishartMatrixDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html
Wolfram Language. (2015). InverseWishartMatrixDistribution. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html
BibTeX
@misc{reference.wolfram_2025_inversewishartmatrixdistribution, author="Wolfram Research", title="{InverseWishartMatrixDistribution}", year="2017", howpublished="\url{https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html}", note=[Accessed: 24-March-2025
]}
BibLaTeX
@online{reference.wolfram_2025_inversewishartmatrixdistribution, organization={Wolfram Research}, title={InverseWishartMatrixDistribution}, year={2017}, url={https://reference.wolfram.com/language/ref/InverseWishartMatrixDistribution.html}, note=[Accessed: 24-March-2025
]}