LameEigenvalueB[ν,j,m]
gives the 
 Lamé eigenvalue
 Lamé eigenvalue ![TemplateBox[{nu, j, m}, LameEigenvalueB] TemplateBox[{nu, j, m}, LameEigenvalueB]](Files/LameEigenvalueB.en/42.png) of order
 of order  with elliptic parameter
 with elliptic parameter  for the Lamé function LameS[ν,j,z,m].
 for the Lamé function LameS[ν,j,z,m].
 
     
   LameEigenvalueB
LameEigenvalueB[ν,j,m]
gives the 
 Lamé eigenvalue
 Lamé eigenvalue ![TemplateBox[{nu, j, m}, LameEigenvalueB] TemplateBox[{nu, j, m}, LameEigenvalueB]](Files/LameEigenvalueB.en/3.png) of order
 of order  with elliptic parameter
 with elliptic parameter  for the Lamé function LameS[ν,j,z,m].
 for the Lamé function LameS[ν,j,z,m].
Details
 
   - Mathematical function, suitable for both symbolic and numerical manipulation.
- The Lamé eigenvalue ![TemplateBox[{nu, j, m}, LameEigenvalueB] TemplateBox[{nu, j, m}, LameEigenvalueB]](Files/LameEigenvalueB.en/6.png) for successive for successive gives the value of the parameter gives the value of the parameter in the Lamé differential equation in the Lamé differential equation (where (where![TemplateBox[{z, m}, JacobiSN] TemplateBox[{z, m}, JacobiSN]](Files/LameEigenvalueB.en/10.png) is the Jacobi elliptic function JacobiSN[z,m]), for which the solution is the function LameS[ν,j,z,m]. is the Jacobi elliptic function JacobiSN[z,m]), for which the solution is the function LameS[ν,j,z,m].
- For certain special arguments, LameEigenvalueB automatically evaluates to exact values.
- LameEigenvalueB[ν,j,0]=j2.
- LameEigenvalueB can be evaluated to arbitrary numerical precision.
- LameEigenvalueB automatically threads over lists.
Examples
open all close allBasic Examples (2)
Scope (14)
Numerical Evaluation (5)
The precision of the output tracks the precision of the input:
LameEigenvalueB can take complex number parameters and argument:
Evaluate LameEigenvalueB efficiently at high precision:
Specific Values (2)
Value of LameEigenvalueB when  and
 and  :
:
Value of LameEigenvalueB for  and
 and  is
 is  :
:
For integer values of  and
 and  , LameEigenvalueB is the root of a polynomial:
, LameEigenvalueB is the root of a polynomial:
Visualization (5)
Plot the first five LameEigenvalueB functions:
Plot the absolute value of the LameEigenvalueB function for complex  :
:
Plot LameEigenvalueB as a function of its first parameter  :
:
Plot LameEigenvalueB as a function of order  and elliptic parameter
 and elliptic parameter  :
:
Plot the family of LameEigenvalueB functions for different values of the elliptic parameter  :
:
Series Expansions (1)
Series expansion of LameEigenvalueB with  at
 at  :
:
Series expansion of LameEigenvalueB with  at
 at  :
:
Function Representations (1)
TraditionalForm formatting:
Applications (1)
LameS solves the Lamé differential equation only if the parameter  is specialized to LameEigenvalueB:
 is specialized to LameEigenvalueB:
Properties & Relations (2)
Use FunctionExpand to expand LameEigenvalueB for integer values of  and
 and  :
:
LameEigenvalueB satisfies a symmetry relation for integer values of  and
 and  and
 and  :
:
Possible Issues (1)
LameEigenvalueB is not defined if  is a negative integer:
 is a negative integer:
LameEigenvalueB is not defined if  is not an integer:
 is not an integer:
See Also
Related Guides
History
Text
Wolfram Research (2020), LameEigenvalueB, Wolfram Language function, https://reference.wolfram.com/language/ref/LameEigenvalueB.html.
CMS
Wolfram Language. 2020. "LameEigenvalueB." Wolfram Language & System Documentation Center. Wolfram Research. https://reference.wolfram.com/language/ref/LameEigenvalueB.html.
APA
Wolfram Language. (2020). LameEigenvalueB. Wolfram Language & System Documentation Center. Retrieved from https://reference.wolfram.com/language/ref/LameEigenvalueB.html
BibTeX
@misc{reference.wolfram_2025_lameeigenvalueb, author="Wolfram Research", title="{LameEigenvalueB}", year="2020", howpublished="\url{https://reference.wolfram.com/language/ref/LameEigenvalueB.html}", note=[Accessed: 31-October-2025]}
BibLaTeX
@online{reference.wolfram_2025_lameeigenvalueb, organization={Wolfram Research}, title={LameEigenvalueB}, year={2020}, url={https://reference.wolfram.com/language/ref/LameEigenvalueB.html}, note=[Accessed: 31-October-2025]}